Microporous organic polymers (MOPs) possessing large specific surface area with high stability are suitable adsorbent to remove contaminants from water, such as organic pollutant and heavy metal contaminants. Herein, a phenanthroline-based microporous organic polymer (Phen-MOP) has been synthesized through the coupling between benzene and 1,10-phenanthroline. The adsorption kinetics and thermodynamics were investigated.
View Article and Find Full Text PDFAlthough diabetic encephalopathy (DE) is a major late complication of diabetes, the pathophysiology of postural instability in DE remains poorly understood. Prior studies have suggested that neuronal apoptosis is closely associated with cognitive function, but the mechanism remains to be elucidated. Green tea, which is a non‑fermented tea, contains a number of tea polyphenols, alkaloids, amino acids, polysaccharides and other components.
View Article and Find Full Text PDFColorectal neoplasia differentially expressed (CRNDE) is a significantly upregulated long noncoding RNA in hepatocellular carcinoma (HCC). CRNDE could promote cell proliferation, migration, and invasion, while its molecular mechanisms were still largely unclear. In this study, we investigated the expression and function of CRNDE.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
July 2018
Nano-bio interaction takes the crucial role in bio-application of nanoparticles. The systematic mapping of interfacial proteins remains the big challenge as low level of proteins within interface regions and lack of appropriate technology. Here, a facile proteomic strategy was developed to characterize the interfacial protein corona (noted as IPC) that has strong interactions with silica nanoparticle, via the combination of the vigorous elution with high concentration sodium dodecyl sulfate (SDS) and the pre-isolation of sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE).
View Article and Find Full Text PDFACS Appl Mater Interfaces
April 2018
An organic-silica hybrid monolithic capillary column was fabricated by crosslinking (3-aminopropyl)trimethoxysilane (APTMS) modified mesoporous carbon nanoparticles (AP-MCNs) with tetramethoxysilane (TMOS) and n-butyltrimethoxysilane (C4-TriMOS). Scanning electron microscopy (SEM), X-ray photoelectron spectroscopy, mercury intrusion porosimetry and inverse size-exclusion chromatography characterization proved the successful immobilization of mesoporous carbon nanoparticles (MCNs). The crosslinking of AP-MCNs into the hybrid monolithic matrix has significantly increased the reversed-phase retention of alkylbenzenes and chromatographic performance for small molecules separations in comparison with the neat one without MCNs.
View Article and Find Full Text PDFThe highly specific affinity between probes and phosphopeptides is the fundamental interaction for selective identification of phosphoproteomes that uncover the mechanisms of signal transduction, cell cycle, enzymatic regulation, and gene expression in biological systems. In this study, a metal-affinity probe possessing both interactions of metal oxide affinity chromatography (MOAC) and immobilized metal ion affinity chromatography (IMAC) was facilely prepared by immobilizing zirconium(IV) on a zirconium-organic framework of UiO-66-NH, which holds dual-metal centers of not only the inherent Zr-O cluster but also the immobilized Zr(IV) center. This dual-metal centered zirconium-organic framework (DZMOF) demonstrates as a highly specific metal-affinity probe toward the extraction of phosphopeptides due to the metal-affinity interactions of MOAC and IMAC toward either mono-phosphorylated or multi-phosphorylated peptides.
View Article and Find Full Text PDFA facile "one-pot" approach to prepare organo-silica hybrid capillary monolithic column with intact mesoporous silica nanoparticle (IMSN) as crosslinker and building block was described. An IMSN crosslinked octadecyl-silica hybrid capillary monolithic column (IMSN-C18 monolithic column) was successfully prepared, and the effects of fabrication conditions (e.g.
View Article and Find Full Text PDFUsing molecular dynamics simulations, we investigated an integrated bio-nano interface consisting of a β-sheet protein stacked onto graphene. We found that the stacking assembly of the model protein on graphene could be controlled by water molecules. The interlayer water filled within interstices of the bio-nano interface could suppress the molecular vibration of surface groups on protein, and could impair the CH···π interaction driving the attraction of the protein and graphene.
View Article and Find Full Text PDFIn this work, a novel core-shell structured gold@graphitized mesoporous silica nanocomposite (Au@GMSN) was synthesized by in situ graphitization of template within the mesochannels of mesoporous silica shell on gold core and demonstrated to be promising nanomaterials for surface-assisted laser desorption/ionization time-of-flight mass spectroscopy (SALDI-TOF MS). The integration of the graphitized mesoporous silica with the gold nanoparticles endowed Au@GMSN with large surface areas of graphitic structure, good dispersibility, and strong ultraviolet (UV) absorption. Au@GMSN exerted the synergistic effect on the efficient detection of small-molecular-weight analytes including amino acids, neutral saccharides, peptides, and traditional Chinese medicine.
View Article and Find Full Text PDFGraphene nanopore has been promising the ultra-high resolution for DNA sequencing due to the atomic thickness and excellent electronic properties of the graphene monolayer. The dynamical translocation phenomena and/or behaviors underneath the blocked ionic current, however, have not been well unveiled to date for the translocation of DNA electrophoretically through a graphene nanopore. In this report, the assessment on the sensitivity of ionic current to instantaneous statuses of DNA in a 2.
View Article and Find Full Text PDF