Background: Constipation is one of the most common gastrointestinal disorders afflicting the population, with recent observational studies implicating dysfunction of the gut microbiota in constipation. Despite observational studies indicating a relationship, a clear causality remains unclear. This study aims to use two-sample Mendelian randomization (MR) to establish a clearer causal relationship between the two.
View Article and Find Full Text PDFThe plasma rotating electrode process (PREP) is an ideal method for the preparation of metal powders such as nickel-based, titanium-based, and iron-based alloys due to its low material loss and good degree of sphericity. However, the preparation of silver alloy powder by PREP remains challenging. The low hardness of the mould casting silver alloy leads to the bending of the electrode rod when subjected to high-speed rotation during PREP.
View Article and Find Full Text PDFJ Neurosci Methods
November 2017
Background: EEG signals are often contaminated with artefacts, particularly with large signals generated by eye blinks. Deletion of artefact can lose valuable data. Current methods of removing the eye blink component to leave residual EEG, such as blind source component removal, require multichannel recording, are computationally intensive, and can alter the original EEG signal.
View Article and Find Full Text PDFIn this report, MgSiO3:Eu-DOX-DPP-RGD hollow microspheres employed for simultaneous imaging and anti-cancer therapy have been designed by sequentially loading the anti-tumor drugs doxorubicin (DOX), light-activated platinum(iv) pro-drug PPD, and a targeted peptide of NH2-Gly-Arg-Gly-Asp-Ser (RGD) onto MgSiO3:Eu mesoporous hollow spheres, which were synthesized using solid SiO2 spheres as sacrificed template by a facile hydrothermal process based on the Kirkendall effect. The photoluminescence intensity of MgSiO3:Eu has been optimized, which can emit a recognized red signal in vitro and in vivo under modest ultraviolet (UV) irradiation. It was found that the platform has high biocompatibility and could become intracellular through fast and effective endocytosis with the aid of the targeted peptide RGD, and chemotherapeutic drugs DOX and light-activated platinum(iv) pro-drug DPP that can be released from the carrier to induce an obvious inhabitation effect to HeLa cancer cells (survival rate of only 17.
View Article and Find Full Text PDFThe high cost of noble metal nanoparticles used for catalytic reduction of 4-nitrophenol (4-NP) leads to an extensive study of Ni nanoparticles (NPs) for their low cost and magnetic properties. However, the conventional routes for preparing the ferromagnetic Ni NPs usually lead to large particle size and aggregation. In this study, we propose a simple two-step method for the synthesis of hierarchical Ni NP supported silica magnetic hollow microspheres (Ni/SiO2 MHMs).
View Article and Find Full Text PDFThe easy aggregation nature of ferromagnetic nanoparticles (NPs) prepared by conventional routes usually leads to a large particle size and low loading, which greatly limits their applications to the reduction of 4-nitrophenol (4-NP). Herein, we developed a novel in situ thermal decomposition and reduction strategy to prepare Ni nanoparticles/silica nanotubes (Ni/SNTs), which can markedly prevent the aggregation and growth of Ni NPs, resulting in an ultra-small particle size (about 6 nm), good dispersion and especially high loading of Ni NPs. It was found that Ni/SNTs, which have a high specific surface area (416 m(2) g(-1)), exhibit ultra-high catalytic activity in the 4-NP reduction (complete reduction of 4-NP within only 60 s at room temperature), which is superior to most noble metal (Au, Pt, and Pd) supported catalysts.
View Article and Find Full Text PDFA unique, double-shelled, hollow, carbon-based composite with enriched nitrogen has been prepared through a facile and versatile synthetic strategy. The hierarchical composite employs the nitrogen-enriched carbon hollow sphere as an interior shell and intercrossed Ni/Al layered double hydroxide (LDH) nanosheets as an exterior shell. The obtained N-C@LDH hollow microspheres (HMS) have high nitrogen enrichment, large specific surface area (337 m(2) g(-1)), and uniform and open mesoporous structure.
View Article and Find Full Text PDFA unique and rational design was presented to fabricate Ni/SiO2@Au magnetic hollow microspheres (MHMs) with interesting structures and well-dispersed metal nanoparticles. Hierarchical nickel silicate hollow microspheres were synthesized using silica colloidal spheres as a chemical template. Then, Ni/SiO2 MHMs with well-dispersed Ni nanoparticles were prepared via an in situ reduction approach.
View Article and Find Full Text PDF