Publications by authors named "Shenghan Su"

Background: A long-term consumption of saturated fat significantly increases the concentration of saturated fatty acids in serum, which accelerates the appearance of senescence markers in β-cells and leads to their dysfunction. An understanding of the mechanisms underlying β-cell senescence induced by stearic acid and the exploration of effective agents preventing it remains largely unclear. Here, we aimed to investigate the protective effect of metformin against stearic acid-treated β-cell senescence and to assess the involvement of miR-297b-5p in this process.

View Article and Find Full Text PDF

Psoriasis is an IL-23/IL-17-mediated inflammatory autoimmune dermatosis, and UVB may contribute to immunosuppression and ameliorate associated symptoms. One of the pathophysiology underlying UVB therapy is the production of cis-urocanic acid (cis-UCA) by keratinocytes. However, the detailed mechanism is yet to be fully understood.

View Article and Find Full Text PDF

Backgruound: Chronic exposure to elevated levels of saturated fatty acids results in pancreatic β-cell senescence. However, targets and effective agents for preventing stearic acid-induced β-cell senescence are still lacking. Although melatonin administration can protect β-cells against lipotoxicity through anti-senescence processes, the precise underlying mechanisms still need to be explored.

View Article and Find Full Text PDF

Dianella ensifolia is a perennial herb with thickened rhizome and is widely distributed in tropical and subtropical regions of Asia, Australia, and the Pacific islands. This plant has the potential to be used as a source of herbal medicine. This study investigated further phytochemistry and tyrosinase inhibitory effect of some constituents isolated from D.

View Article and Find Full Text PDF

Chronic exposure to high concentrations of circulating palmitic acid and stearic acid leads to impaired β cell function, which accelerates the development of type 2 diabetes. However, differences in the mechanisms underlying this process between these two saturated fatty acids remain largely unknown. In this study, we screened for potential circular RNAs (circRNAs) and their associated regulatory pathways in palmitic acid- and stearic acid-induced mouse β-TC6 cell dysfunction.

View Article and Find Full Text PDF

Cultivation of the actinobacteria strain Isoptericola chiayiensis, a mangrove-derived actinobacteria that was isolated from a mangrove soil collected in Chiayi County, resulted in the isolation of one new 2-furanone derivative, isopterfuranone (1), one new sesquiterpenoid, isopterchiayione (2), one new benzenoid derivative, isopterinoid (3), five new flavonoids, chiayiflavans A-E (4-8), and 4 metabolites isolated for the first time from nature source, methyl 3-(4-methyl-2,5-dioxopyrrolidin-3-yl)propanoate (9), 3-ethyl-4-methylpyrrolidine-2,5-dione (10), chiayiensol (11) and chiayiensic acid (12). Their structures were determined through in-depth spectroscopic and mass-spectrometric analyses. Most of the isolates showed potent inhibitory effects on NO production in LPS-stimulated RAW 264.

View Article and Find Full Text PDF

Long-term consumption of a high-fat diet increases the circulating concentration of stearic acid (SA), which has a potent toxic effect on β-cells, but the underlying molecular mechanisms of this action have not been fully elucidated. Here, we evaluated the role of long noncoding (lnc)RNA TCONS_00077866 (lnc866) in SA-induced βcell inflammation. lnc866 was selected for study because lncRNA high-throughput sequencing analysis demonstrated it to have the largest fold-difference in expression of five lncRNAs that were affected by SA treatment.

View Article and Find Full Text PDF

Background: Chronic exposure of pancreatic β cells to high levels of stearic acid (C18:0) leads to impaired insulin secretion, which accelerates the progression of type 2 diabetes mellitus (T2DM). Recently, long noncoding RNAs (lncRNAs) were found to participate in saturated fatty acid-induced metabolism dysfunction. However, their contribution to stearic acid-induced β-cell dysfunction remains largely unknown.

View Article and Find Full Text PDF

We realized photovoltaic operation in large-scale MoS2 monolayers by the formation of a type-II heterojunction with p-Si. The MoS2 monolayer introduces a built-in electric field near the interface between MoS2 and p-Si to help photogenerated carrier separation. Such a heterojunction photovoltaic device achieves a power conversion efficiency of 5.

View Article and Find Full Text PDF