Sojae semen germinatum (SSG) is derived from mature soybean seeds that have been germinated and dried, typically with sprouts measuring approximately 0.5 cm in length. SSG is traditionally known for its properties in clearing heat and moisture.
View Article and Find Full Text PDFReal-time monitoring of human health can be significantly improved by designing novel electronic skin (E-skin) platforms that mimic the characteristics and sensitivity of human skin. A high-quality E-skin platform that can simultaneously monitor multiple physiological and metabolic biomarkers without introducing skin discomfort or irritation is an unmet medical need. Conventional E-skins are either monofunctional or made from elastomeric films that do not include key synergistic features of natural skin, such as multi-sensing, breathability, and thermal management capabilities in a single patch.
View Article and Find Full Text PDFWearable piezoresistive sensors are being developed as electronic skins (E-skin) for broad applications in human physiological monitoring and soft robotics. Tactile sensors with sufficient sensitivities, durability, and large dynamic ranges are required to replicate this critical component of the somatosensory system. Multiple micro/nanostructures, materials, and sensing modalities have been reported to address this need.
View Article and Find Full Text PDFThe remarkable ability of biological systems to sense and adapt to complex environmental conditions has inspired new materials and novel designs for next-generation wearable devices. Hydrogels are being intensively investigated for their versatile functions in wearable devices due to their superior softness, biocompatibility, and rapid stimulus response. This review focuses on recent strategies for developing bioinspired hydrogel wearable devices that can accommodate mechanical strain and integrate seamlessly with biological systems.
View Article and Find Full Text PDF