Publications by authors named "Shenghai Li"

Current single-function superwettable materials are typically designed for either oil removal or water removal and are constrained by oil density, limiting their widespread applications. Janus membranes with opposite wettability on their two surfaces have recently emerged and present attractive opportunities for on-demand oil/water emulsion separation. Here, a combination strategy is introduced to prepare a Janus membrane with asymmetric superwettability for switchable oil/water emulsion separation.

View Article and Find Full Text PDF

The precise and effective isolation of living circulating tumor cells (CTCs) from peripheral blood, followed by their real-time monitoring, is crucial for diagnosing cancer patients. In this study, a cell-imprinted double-network (DN) hydrogel modified with circular multi-DNA (CMD), coined the CMD-imprinted hydrogel with fixed cells as templates (CMD-CIDH), was developed. The hydrogel featured a customized surface for proficient capture of viable CTCs and real-time fluorescent detection without subsequent release.

View Article and Find Full Text PDF

Developing a new strategy to retain phosphoric acid (PA) to improve the performance and durability of high-temperature proton exchange membrane fuel cell (HT-PEMFC) remains a challenge. Here, a strategy for ion-restricted catcher microstructure that incorporates PA-doped multi-quaternized poly(fluorene alkylene-co-biphenyl alkylene) (PFBA) bearing confined nanochannels is reported. Dynamic analysis reveals strong interaction between side chains and PA molecules, confirming that the microstructure can improve PA retention.

View Article and Find Full Text PDF

Covalent organic frameworks (COFs) are a family of engaging membrane materials for molecular separation, which remain challenging to fabricate in the form of thin-film composite membranes due to slow crystal growth and insoluble powder. Here, an additive approach is presented to construct COF-based thin-film composite membranes in 10 min via COF oligomer coating onto poly(ether ether ketone) (PEEK)ultrafiltration membranes. By the virtue of ultra-thin liquid phase and liquid-solid interface-confined assembly, the COF oligomers are fast stacked up and grow along the interface with the solvent evaporation.

View Article and Find Full Text PDF

High mass transport resistance within the catalyst layer is one of the major factors restricting the performance and low Pt loadings of proton exchange membrane fuel cells (PEMFCs). To resolve the issue, a novel partially ordered phosphonated ionomer (PIM-P) with both an intrinsic microporous structure and proton-conductive functionality was designed as the catalyst binder to improve the mass transport of electrodes. The rigid and contorted structure of PIM-P limits the free movement of the conformation and the efficient packing of polymer chains, resulting in the formation of a robust gas transmission channel.

View Article and Find Full Text PDF

Porous membranes with under-liquid dual superlyophobic properties, which are difficult to achieve because of a thermodynamic contradiction, have attracted considerable interest in the field of switchable oil/water separation. Herein, a bioinspired mesh membrane with alternating hydrophilic and hydrophobic chemical patterns on its surface that endows it with superamphiphilic and under-liquid dual superlyophobic properties is fabricated by a simple liquidus modification process. The as-prepared membrane possesses a combination of under-oil superhydrophobic and under-water superoleophobic characteristics in the absence of external stimuli.

View Article and Find Full Text PDF

The supporting layer of nanofiltration membranes is critical to the overall nanofiltration performance. However, conventional supports lack efficient surface porosity, which leads to the limited utilization rate of the polyamide (PA) layer. Herein a double-skin-layer nanofiltration membrane with porous organic polymer nanointerlayers prepared via a two-step interfacial polymerization technique is presented to investigate the effect of the interlayers' pore properties on the performance of the thin-film composite.

View Article and Find Full Text PDF

Aqueous organic flow batteries have attracted dramatic attention for stationary energy storage due to their resource sustainability and low cost. However, the current reported systems can normally be operated stably under a nitrogen or argon atmosphere due to their poor stability. Herein a stable air-insensitive biphenol derivative cathode, 3,3',5,5'-tetramethylaminemethylene-4,4'-biphenol (TABP), with high solubility (>1.

View Article and Find Full Text PDF

An innovative tactic to prepare porous organic polymer membranes was developed via interfacial azo-coupling polymerization. The membranes possess plentiful anchoring sites for loading Pd nanoparticles, and served as a membrane reactor, which exhibits high-performance catalytic reduction with a flux of 27.3 t m day and good long-term stability due to almost zero Pd leaching.

View Article and Find Full Text PDF

A novel liquid-infused, patterned, porous membrane system with anti-fouling characteristics is prepared via simple co-infusion of oil and water within hydrophobic and superhydrophilic surfaces of a porous membrane, respectively. This membrane simultaneously repels the immiscible water and oil exhibiting excellent interfacial floatability at the oil-water interface as a separator, thus showing promise for use in applications in the immiscible oil/water separation industry and liquid-liquid extraction.

View Article and Find Full Text PDF

A novel liquid-based Janus porous membrane system was developed through the simple infusion of water and oil within different surfaces. This generates a stable liquid-infusion interface that repels immiscible organic solvents and water, and itself floats at the oil/water interface as a separator. The developed membrane successfully acts as a simple alternative for high-performance liquid separation.

View Article and Find Full Text PDF

Functionalized polysulfone (PSf) membranes with combined antibacterial and antifouling properties were fabricated by incorporating a poly(ethyleneoxide)-grafted (PEO-grafted) amphiliic polymer. Both antifouling and antibacterial groups were easily introduced onto the membrane surfaces through non-solvent induced phase separon process and a simple chlorination process. It was observed that the functionalized membranes were effectivatie in resisting both protein absorption and bacterial adhesion.

View Article and Find Full Text PDF

The pierced nanowire Janus porous membrane prepared in this study possesses piercing conical nanoneedles, which not only form a transport channel to enhance unidirectional water transport, but also reduce the energy barrier of water transport by changing the route of water transport from droplet to film.

View Article and Find Full Text PDF

It is well recognized by the scientific community that the fog can be deposited and transported on asymmetric surfaces, thus numerous efforts have been made to create such surfaces. However, it is still challenging to design a surface capable of fast deposition and rapid transportation simultaneously. Herein, inspired by the asymmetric structure of cactus spines and the cooperative hydrophilic/hydrophobic regions of desert beetles, a superhydrophilic-hydrophobic integrated conical stainless steel needle (SHCSN) is fabricated by a facile method.

View Article and Find Full Text PDF

Ultrafiltration membranes with integrated antimicrobial and antifouling properties were fabricated using an engineering thermoplastic (carboxylated cardopoly(aryl ether ketone, PEK-COOH). Different molecular weights of PEO (Mw: 120, 350, 550) were grafted to the PEK-COOH membrane surface via EDC/NHS methodology. N-chloramine modified membranes then were prepared by simple exposure to dilute sodium hypochlorite solution.

View Article and Find Full Text PDF

In this study, a cardo poly(aryl ether ketone) ultrafiltration membrane containing an N-chloramine functional group (PEK-N-Cl membrane) was easily obtained via exposure of a cardo poly(aryl ether ketone) ultrafiltration membrane (PEK-NH membrane) to dilute sodium hypochlorite solution. The chlorination process did not harm membrane performance. In addition, the PEK-N-Cl membrane was stable in both air and water.

View Article and Find Full Text PDF

The bacteria-repellent and bactericidal functionalities in a single system are generally need to be carefully optimized in order to obtain the highest antibacterial performance. In this study, the controlled SI-PIMP strategy was developed for creating hierarchical polymer brushes possessing the bacteria-repellent and bactericidal functionalities. To obtain a bactericidal surface with minimal interference to its nonfouling property, optimization studies were conducted by facilely tailoring the surface density of the quaternary ammonium compound moieties through control over the monomer concentration.

View Article and Find Full Text PDF

Thin film composite nanofiltration membranes were fabricated through dip-coating and in situ cross-linking of quaternized poly(ether ether ketone) containing a certain amount of tertiary amine groups (QAPEEKs) on polyacrylonitrile (PAN) support. The effects of the variables in membrane formation such as the coating polymer concentration, the curing temperature, and the cross-linking agent types on resultant membrane were studied and the membrane properties such as the barrier layer chemical structure, the surface element composition and morphology were investigated. The obtained performance of uncross-linked and cross-linked QAPEEK-70 thin film composites in nanofiltration test was compared.

View Article and Find Full Text PDF

Studies have been devoted to the transport and accumulation of persistent organic pollutants (POPs) in mountain environments. The Himalayas have the widest altitude gradient of any mountain range, but few studies examining the environmental behavior of POPs have been performed in the Himalayas. In this study, air, soil, and leaf samples were collected along a transect on the southern slope of the Himalayas, Nepal (altitude: 135-5100 m).

View Article and Find Full Text PDF

Ultrathin films of organic networks on various substrates were fabricated through the solution-based molecular layer deposition (MLD) technique. The rigid tetrahedral geometries of polyfunctional amine and acyl chloride involved in the reaction ensure the continuity of the polymerization process. A linear increase in film thickness with respect to cycle number was observed by UV-vis adsorption, ellipsometry, and quartz crystal microbalance.

View Article and Find Full Text PDF

A novel SPES-NH(2)-GA-Nafion® composite membrane with higher proton conductivity and lower methanol permeability was fabricated by covalent crosslinking layer-by-layer self-assembly of an unbalanced charged polyampholyte (SPES-NH(2)) and glutaraldehyde (GA) with controllable free sulfonic acid content.

View Article and Find Full Text PDF

The microbial diversity and abundance in surface snow at different altitudes (5300 and 5504 m above sea level), a moraine lake and a glacial stream in the Yala Glacier on the southern slope of the Himalayas were investigated through a 16S rRNA gene clone library and flow cytometry approaches. Cell abundance in different habitats changed from 1.1 × 10(4) to 25 × 10(4) cells mL(-1), with the highest abundance in the moraine lake and the lowest abundance in the snow at 5504 m.

View Article and Find Full Text PDF

A novel poly(aryl ether sulfone) ionomer containing hexaalkylguanidinium groups was synthesized, and membranes formed from this polymer displayed large ionic clusters, high hydroxide conductivity, and excellent solubility in low boiling point water-soluble solvents such as ethanol and methanol.

View Article and Find Full Text PDF

The synthesis and characterization of carbon-coated ferromagnetic nanoparticles that organize into 1-D assemblies of micrometer-sized ferromagnetic chains is described. A controlled aromatization and carbonization of glucose under hydrothermal reaction conditions enabled the preparation of carbonaceous surfactants that were used as shells for the coating of ferromagnetic Fe(3)O(4) nanospheres with a uniform size distribution. Under controlled experimental conditions, it was, for the first time, demonstrated that glucose could be employed as the carbon source in the preparation of continuous 1-D carbon nanoparticle chains with magnetic nanosphere inclusions.

View Article and Find Full Text PDF

Novel guanidinium ionic liquid-grafted rigid poly(p-phenylene) (PPPIL) microspheres have been developed for metal scavenging and catalysis. The noble-metal nanoparticles supported on the microspheres surface can be used as efficient heterogeneous catalysts. The combination of nanoparticles and ionic liquid fragments on the microsphere surfaces enhance the activity and durability of the catalyst.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: