Identification of interactions between chemical compounds and proteins is crucial for various applications, including drug discovery, target identification, network pharmacology, and elucidation of protein functions. Deep neural network-based approaches are becoming increasingly popular in efficiently identifying compound-protein interactions with high-throughput capabilities, narrowing down the scope of candidates for traditional labor-intensive, time-consuming and expensive experimental techniques. In this study, we proposed an end-to-end approach termed SPVec-SGCN-CPI, which utilized simplified graph convolutional network (SGCN) model with low-dimensional and continuous features generated from our previously developed model SPVec and graph topology information to predict compound-protein interactions.
View Article and Find Full Text PDFNumerous investigations increasingly indicate the significance of microRNA (miRNA) in human diseases. Hence, unearthing associations between miRNA and diseases can contribute to precise diagnosis and efficacious remediation of medical conditions. The detection of miRNA-disease linkages via computational techniques utilizing biological information has emerged as a cost-effective and highly efficient approach.
View Article and Find Full Text PDFJ Chem Inf Model
December 2023
Protein-protein interactions (PPIs) are essential for various biological processes and diseases. However, most existing computational methods for identifying PPI modulators require either target structure or reference modulators, which restricts their applicability to novel PPI targets. To address this challenge, we propose MultiPPIMI, a sequence-based deep learning framework that predicts the interaction between any given PPI target and modulator.
View Article and Find Full Text PDFThe recognition of T-cell receptor (TCR) on the surface of T cell to specific epitope presented by the major histocompatibility complex is the key to trigger the immune response. Identifying the binding rules of TCR-epitope pair is crucial for developing immunotherapies, including neoantigen vaccine and drugs. Accurate prediction of TCR-epitope binding specificity via deep learning remains challenging, especially in test cases which are unseen in the training set.
View Article and Find Full Text PDFThe joint use of multiple drugs can result in adverse drug-drug interactions (DDIs) and side effects that harm the body. Accurate identification of DDIs is crucial for avoiding accidental drug side effects and understanding potential mechanisms underlying DDIs. Several computational methods have been proposed for multi-type DDI prediction, but most rely on the similarity profiles of drugs as the drug feature vectors, which may result in information leakage and overoptimistic performance when predicting interactions between new drugs.
View Article and Find Full Text PDFCritically infected patients with COVID-19 (coronavirus disease 2019) are prone to develop sepsis-related coagulopathy as a result of a robust immune response. The mechanism underlying the relationship between sepsis and COVID-19 is largely unknown. LMWH (low molecular weight heparin) exhibits both anti-inflammatory and anti-coagulating properties that result in a better prognosis of severely ill patients with COVID-19 co-associated with sepsis-induced coagulopathy or with a higher D-dimer value.
View Article and Find Full Text PDFThe joint use of multiple drugs may cause unintended drug-drug interactions (DDIs) and result in adverse consequence to the patients. Accurate identification of DDI types can not only provide hints to avoid these accidental events, but also elaborate the underlying mechanisms by how DDIs occur. Several computational methods have been proposed for multi-type DDI prediction, but room remains for improvement in prediction performance.
View Article and Find Full Text PDFPolypharmacy (multiple use of drugs) is an effective strategy for combating complex or co-existing diseases. However, a major consequence of polypharmacy is a higher risk of adverse side effects due to drug-drug interactions, which are rare and observed in relatively small clinical testing. Thus, identification of polypharmacy side effects remains challenging.
View Article and Find Full Text PDFOne of the main problems with the joint use of multiple drugs is that it may cause adverse drug interactions and side effects that damage the body. Therefore, it is important to predict potential drug interactions. However, most of the available prediction methods can only predict whether two drugs interact or not, whereas few methods can predict interaction events between two drugs.
View Article and Find Full Text PDF