Understanding the spatiotemporal processes governing Cd behavior at the soil-solution-root interface is crucial for developing effective remediation strategies. This study examined the processes of chemical remediation in Cd-contaminated paddy soil using rhizotrons over the entire rice growth period. One-dimensional profile sampling with a 10 cm resolution revealed that during the initial flooding, paddy soil was strongly stimulated, followed by stabilization of porewater properties.
View Article and Find Full Text PDFUnlabelled: While many studies have examined the role of biochar in carbon (C) accrual in short-term scale, few have explored the decadal scale influences of biochar on non-biochar C, e.g., native soil organic C (SOC) and added substrate.
View Article and Find Full Text PDFJ Environ Sci (China)
February 2024
The digestibility of cadmium (Cd) in brown rice is directly related to amino acid metabolism in rice and human health. In our field study, three kinds of alkaline calcium-rich soil inorganic amendments (SIAs) at three dosages were applied to produce safe rice and improve the quality of rice in Cd-contaminated paddy. With the increased application of SIA, Cd content in iron plaque on rice root significantly increased, the transfer of Cd from rice root to grain significantly decreased, and then Cd content in brown rice decreased synchronously.
View Article and Find Full Text PDFFlue gas desulfurization steel slag (DS), a solid waste produced by coal power plants and steelworks, was proposed as an amendment for the remediation of saline-sodic soil. A pot experiment including three dosages of DS alone (1%, 5%, 10% w/w) and their combination with fulvic acid (FA, 1%, w/w) was conducted to evaluate the potentials of DS as an amendment and to explore remediation mechanism of DS combined with FA on saline-sodic soil. The soil salinity, nutrition, pore structure, water retention, consistency, and desiccation cracking of DS and FA-amended soils were determined.
View Article and Find Full Text PDFThe relationship between iron manganese plaque (IP) and cadmium (Cd) accumulation by rice in the microenvironment of rice rhizosphere at varying field scales needs to be further explored. In this study, we selected different rice varieties and implemented tailored amendments to ensure the safe production of rice grains in heavily Cd-contaminated farmland situated around an E-waste dismantling site. Through regional surveys, we elucidated the role of IP in facilitating safe rice production.
View Article and Find Full Text PDFAlkaline soil inorganic amendments (SIAs) have been extensively used to improve acidic soils. In this study, we arranged 9 treatments of low, medium, and high application dosages of silicon calcium magnesium potassium fertilizer, calcium magnesium phosphate fertilizer, and lime in the field to study the mechanism of SIAs in improving acidic soils. The Al sequential extraction experiment showed that the application of SIAs tended to transform from active to stable fractions of Al.
View Article and Find Full Text PDFThe by-product of wet flue gas desulfurization, desulfurized steel slag (DS), had chemical characteristics like natural gypsum that can be used to improve saline-sodic soil. However, contamination risk of heavy metals for cycling utilization of DS in agriculture was concerned mostly. Both pot and field experiments were conducted for evaluating the potential pollution risk of DS as the amendment of saline-sodic soil.
View Article and Find Full Text PDFSoil acidification improvement in the main grain production regions of southern China is an important issue to enhance the quality of cultivated land and promote grain yield. In order to explore the effects of oyster shell powder and lime on acidity and availability and inorganic forms of phosphorus in acidic paddy soil, a pot experiment was performed using oyster shell powder and lime amendments with dosages of 0.05%, 0.
View Article and Find Full Text PDFCadmium (Cd) is one of the main pollutants in acidic paddy fields, and its accumulation in rice ( L.) and subsequent transfer to the food chain is an important environmental issue in China. In our field study, three types of inorganic passivators (silicon-calcium-magnesium-potassium fertilizer (SCMK), calcium magnesium phosphate fertilizer (CMP), and lime (L) at the rate of 750, 1500, and 2250 kg·hm, respectively) were applied to acidic paddy soils polluted by the heavy metal Cd in southern Zhejiang province.
View Article and Find Full Text PDFSoil environmental quality in China for agricultural land always considers the effect of total cadmium (Cd) in soil, ignoring the bioavailability of soil Cd. The 139 paired rice (Oryza sativa L.) and soil samples were collected from the Cd-contaminated paddy fields of southern Zhejiang Province, China.
View Article and Find Full Text PDFRice often accumulates higher Cd from contaminated soils, thereby endangering human health. In this study, microbial organic fertilizer (MOF) was applied at the rate of 3, 4.5, and 7.
View Article and Find Full Text PDFThe decline disease of Myrica rubra tree is commonly induced by soil acidification, which affects the yield and the quality of fruits. It is hypothesized that aluminum toxicity and microbial community changes caused by soil acidification were the main causes of decline of Myrica rubra tree. In order to explore the decline mechanism of Myrica rubra tree, soils around healthy and decline trees of Myrica rubra were collected to compare the concentrations of different aluminum forms, enzyme activities, and bacterial community structure.
View Article and Find Full Text PDFDirect application of contaminated-rice straw (CRS) to soil can cause the secondary pollution in agricultural land because of high content of Cd in rice straw. This study employed biochar or modified biochar technique to reduce the potential pollution risk of Cd in CRS. In the pot experiment, the CRS, straw biochar prepared at 300 °C (B300) and 500 °C (B500), and phosphorus modified biochar pyrolyzed at 300 °C (PB300) and 500 °C (PB500) were added at dosage of 5% into three typical paddy soils.
View Article and Find Full Text PDFCrop straw is commonly returned back to agricultural fields to improve soil nutrient status. In order to compare the effects of straw returning modes (direct and carbonization returning) on the phosphorus (P) availability in acidic soils and explore possible chemical and microbial mechanisms, a pot experiment was conducted. The rice straw, canola stalk at the rate of 1% (w/w) and their corresponding biochar produced by the same amount of straw at 350 °C and 550 °C were used, and two-season crops (rice and soybean) were planted.
View Article and Find Full Text PDFBiochar has the potential to control the bioavailability and transformation of heavy metals in soil, thereby ensuring the safe crop production. A three seasons field experiment was conducted to investigate the effect of crop straw-derived biochar on the bioavailability and crop accumulation of Cd and Cu in contaminated soil. Wheat straw biochar (WSB), corn stalk biochar (CSB), and rice husk biochar (RHB) were applied at the rate of 0, 1.
View Article and Find Full Text PDFSaline-sodic soil is considered the most important low-yield soil in arid and semi-arid regions. Flue gas desulfurization (FGD) steel slag is a kind of by-product from wet FGD process, in which steel slag powder replaces lime as sorbent of SO emitted from coal-fired power plants. It could potentially be used to ameliorate saline-sodic soil.
View Article and Find Full Text PDFThe total concentration, chemical speciation and availability of Cd in biochar derived from Cd-contaminated rice straw were determined to evaluate the potential environmental risk of Cd in biochar and the possibility of biochar as effective way to dispose Cd-contaminated straw. The Cd was concentrated with the increased pyrolysis temperature, while the bioavailability of Cd in biochar was reduced. The sequence extraction indicated that residual fraction of Cd increased and acid exchangeable fraction decreased as pyrolysis temperature increased.
View Article and Find Full Text PDFTo compare the dynamic effects of straw and corresponding biochar on soil acidity, nutrients, and exchangeable capacity in red soil, a pot experiment was performed. The treatments included control (CK), rice straw (R1B0), rice straw biochar prepared at 350℃ (R1B1) and 550℃ (R1B2), rape stalk (R2B0), and rape stalk biochar prepared at 350℃ (R2B1) and 550℃ (R2B2). Straw at 1% and corresponding biochar were added to a strongly acidic red soil.
View Article and Find Full Text PDFTo investigate the dynamic effects of biochars produced from different biomass materials on farmland soil acidity, exchangeable cations, phosphorus nutrient, and crop yield, a field experiment was performed on acid paddy soil. Five types of biochars-rice straw biochar (RSB), maize straw biochar (MSB), wheat straw biochar (WSB), rice husk biochar (RHB), and bamboo charcoal (BCB)-were applied to farmland soil at mass fraction of 0.1%.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
September 2020
Cadmium (Cd) contamination in the soil-rice chain is the major threat to human health in China. It is very necessary to lower Cd phytoavailability in contaminated soils and reduce Cd transfer from soil to rice for food safety. This study applied the Si-Ca-K-Mg amendment (SCKM) to immobilize Cd in acidic soils and then reduce its accumulation in rice grain (Oryza sativa L.
View Article and Find Full Text PDFRice contamination by cadmium (Cd) poses a serious threat to human health, which has attracted widespread concerns in China. It is imperative to determine major soil factors influencing the accumulation of Cd in rice and develop prediction models to derive the threshold concentration of Cd in soil for rice food safety. In this study, the bioavailability, accumulation, and transfer of Cd in the 18 typical paddy soil-rice systems with a wide range of soil properties was investigated using pot experiments.
View Article and Find Full Text PDFBiochars are widely used to improve soil macropore structures. However, the size-dependent effects of biochars in affecting macropore structure still remain unclear. In this study, the modification of soil macropore structure following biochar addition was investigated by high-resolution X-ray tomography (CT) and advanced data analytical methods.
View Article and Find Full Text PDFDespite the knowledge regarding allelopathy, known as a major ecological mechanism for biological weed control, had increased greatly, the role of soil microorganisms in that field remained controversial. The study sought to evaluate the interference potential of soil microorganisms, residues-derived allelochemicals and their interaction on seed germination and understand the variation of microbial community in allelopathic activities. Three different rice residues-derived fractions from variety PI312777 (extracts, straw fraction and fresh residue) were applied to sterile and live soils to disentangle the interference potential of soil microorganisms, residues-derived allelochemicals and their interaction concerned allelopathic activities.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
December 2019
Food chain contamination by soil cadmium (Cd) through vegetable consumption poses a threat to human health. It is imperative to understand the Cd uptake and transfer in different soil-vegetable systems. The aims of this study were to understand the effect of soil characteristics on Cd accumulation and transfer in pepper and to derive regression models to predict Cd concentrations in the vegetable grown on a wide range of soils with different properties.
View Article and Find Full Text PDFTechnogenic magnetic particles (TMPs) from industrial activities are major contamination sources of soils and dusts because they usually carry large amounts of heavy metals. The understanding of the association between TMPs and heavy metals in contaminated soils helps to trace the polluting sources and probing into the mechanism of magnetic phases enriched with heavy metals. In this study, we tracked the magnetic carries of heavy metals from different emission sources in steel industrial regions by using the synchrotron-based probe techniques and multiscale analytical methods.
View Article and Find Full Text PDF