Rapid biodiversity losses under global climate change threaten forest ecosystem functions. However, our understanding of the patterns and drivers of multiple ecosystem functions across biodiversity gradients remains equivocal. To address this important knowledge gap, we measured simultaneous responses of multiple ecosystem functions (nutrient cycling, soil carbon stocks, organic matter decomposition, plant productivity) to a tree species richness gradient of 1, 4, 8, 16, and 32 species in a young subtropical forest.
View Article and Find Full Text PDFThe decomposition of litter and the supply of nutrients into and from the soil are two fundamental processes through which the above- and belowground world interact. Microbial biodiversity, and especially that of decomposers, plays a key role in these processes by helping litter decomposition. Yet the relative contribution of litter diversity and soil biodiversity in supporting multiple ecosystem services remains virtually unknown.
View Article and Find Full Text PDFAlthough habitat loss and subdivision are considered main causes of sharp declines in biodiversity, there is still great uncertainty concerning the response of soil microbial biomass, diversity, and assemblage to habitat subdivision at the regional scale. Here, we selected 61 subtropical land-bridge islands (with small, medium, and large land areas) with a 50-year history of habitat subdivision and 9 adjacent mainland sites to investigate how habitat subdivision-induced unequal-sized patches and isolation affects biomass, diversity, and assemblages of soil bacteria and fungi. We found that the soil bacterial and fungal biomass on all unequal-sized islands were higher than that on mainland, while soil bacterial and fungal richness on the medium-sized islands were higher than that on mainland and other-sized islands.
View Article and Find Full Text PDFInfluenced by nitrogen (N) deposition, changes in soil organic carbon (SOC) sequestration in terrestrial ecosystems could provide strong feedback to climate change. Mounting evidence showed that microbial necromass contributes substantially to SOC sequestration; however, how N deposition influences microbial necromass accumulation in soils remains elusive. We investigated the impacts of N deposition on soil microbial necromass, assessed by amino sugars, at seven forest sites along a north-south transect in eastern China.
View Article and Find Full Text PDFTerrestrial species are predicted to migrate northward under global warming conditions, yet little is known about the direction and magnitude of change in microbial distribution patterns. In this continental-scale study with more than 1600 forest soil samples, we verify the existence of core microbiota and lump them into a manageable number of eco-clusters based on microbial habitat preferences. By projecting the abundance differences of eco-clusters between future and current climatic conditions, we observed the potential warming-driven migration of the core microbiota under warming, partially verified by a field warming experiment at Southwest China.
View Article and Find Full Text PDFUnderstanding the temperature sensitivity (Q ) of soil organic C (SOC) decomposition is critical to quantifying the climate-carbon cycle feedback and predicting the response of ecosystems to climate change. However, the driving factors of the spatial variation in Q at a continental scale are fully unidentified. In this study, we conducted a novel incubation experiment with periodically varying temperature based on the mean annual temperature of the soil origin sites.
View Article and Find Full Text PDFEnviron Microbiol
January 2018
World-wide conversion of natural forests to other land uses has profound effects on soil microbial communities. However, how soil microbial β-diversity responds to land-use change and its driving mechanisms remains poorly understood. In this study, therefore, we examined the effect of forest conversion from native broad-leaved forest to coniferous plantation on soil microbial β-diversity and its underlying mechanisms in both summer and winter in subtropical China.
View Article and Find Full Text PDF