Transition metal dichalcogenides (TMDs) are interesting for understanding the fundamental physics of two-dimensional (2D) materials as well as for applications to many emerging technologies, including spin electronics. Here, we report the discovery of long-range magnetic order below = 40 and 100 K in bulk semiconducting TMDs 2H-MoTe and 2H-MoSe, respectively, by means of muon spin rotation (μSR), scanning tunneling microscopy (STM), and density functional theory (DFT) calculations. The μSR measurements show the presence of large and homogeneous internal magnetic fields at low temperatures in both compounds indicative of long-range magnetic order.
View Article and Find Full Text PDFThe original version of this article omitted the following from the Acknowledgements: "CAM and AL were supported by the NSF MRSEC program through Columbia in the Center for Precision Assembly of Superstratic and Superatomic Solids (DMR-1420634). Additionally, this research used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S.
View Article and Find Full Text PDFIn its orthorhombic T polymorph, MoTe is a type-II Weyl semimetal, where the Weyl fermions emerge at the boundary between electron and hole pockets. Non-saturating magnetoresistance and superconductivity were also observed in T -MoTe. Understanding the superconductivity in T -MoTe, which was proposed to be topologically non-trivial, is of eminent interest.
View Article and Find Full Text PDFWe report muon-spin rotation and neutron-scattering experiments on nonmagnetic Zn impurity effects on the static spin-stripe order and superconductivity of the La214 cuprates. Remarkably, it was found that, for samples with hole doping x≈1/8, the spin-stripe ordering temperature T_{so} decreases linearly with Zn doping y and disappears at y≈4%, demonstrating a high sensitivity of static spin-stripe order to impurities within a CuO_{2} plane. Moreover, T_{so} is suppressed by Zn in the same manner as the superconducting transition temperature T_{c} for samples near optimal hole doping.
View Article and Find Full Text PDFThe superconducting gap structure in iron-based high-temperature superconductors (Fe-HTSs) is non-universal. In contrast to other unconventional superconductors, in the Fe-HTSs both d-wave and extended s-wave pairing symmetries are close in energy. Probing the proximity between these very different superconducting states and identifying experimental parameters that can tune them is of central interest.
View Article and Find Full Text PDFLarge negative oxygen-isotope (^{16}O and ^{18}O) effects (OIEs) on the static spin-stripe-ordering temperature T_{so} and the magnetic volume fraction V_{m} were observed in La_{2-x}Ba_{x}CuO_{4}(x=1/8) by means of muon-spin-rotation experiments. The corresponding OIE exponents were found to be α_{T_{so}}=-0.57(6) and α_{V_{m}}=-0.
View Article and Find Full Text PDFJ Phys Condens Matter
September 2013
The antiferromagnetic (AFM) phase transition temperature TN of EuTiO3 has been studied as a function of pressure p. The data reveal a nonlinear dependence of TN on p with TN increasing with increasing pressure. The exchange interactions exhibit an analogous dependence on p as TN (if the absolute value of the nearest neighbor interaction is considered) and there is evidence that the AFM transition is robust with increasing pressure.
View Article and Find Full Text PDFThe magnetoelectric (ME) coupling on spin-wave resonances in single-crystal Cu2OSeO3 was studied by a novel technique using electron spin resonance combined with electric field modulation. An external electric field E induces a magnetic field component μ0H(i)=γE along the applied magnetic field H with γ=0.7(1) μT/(V/mm) at 10 K.
View Article and Find Full Text PDFThe effect of pressure on the magnetic penetration depth λ was tested for the hole-doped superconductor YBa(2)Cu(3)O(7-δ) and in the electron-doped one Sr(0.9)La(0.1)CuO(2) by means of magnetization measurements.
View Article and Find Full Text PDFJ Phys Condens Matter
February 2009
A detailed analysis of muon-spin rotation (μSR) spectra in the vortex state of type-II superconductors using different theoretical models is presented. Analytical approximations of the London and Ginzburg-Landau (GL) models, as well as an exact solution of the GL model were used. The limits of the validity of these models and the reliability for extracting parameters such as the magnetic penetration depth λ and the coherence length ξ from the experimental μSR spectra were investigated.
View Article and Find Full Text PDFThe various phases observed in all cuprate superconductors [superconducting (SC), spin-glass (SG), and antiferromagnetic (AFM)] were investigated with respect to oxygen-isotope (16O/18O) effects, using here as a prototype system of cuprates Y1-xPrxBa2Cu3O7-delta. All phases exhibit an isotope effect which is strongest where the respective phase terminates. In addition, the isotope effects on the magnetic phases (SG and AFM) are sign reversed as compared to the one on the superconducting phase.
View Article and Find Full Text PDFThe in-plane magnetic field penetration depth (lambda(ab)) in single-crystal La1.83Sr0.17CuO4 was investigated by muon-spin rotation (muSR).
View Article and Find Full Text PDFMuon-spin-rotation (muSR) measurements of the in-plane penetration depth lambda(ab) have been performed in the infinite-layer electron-doped Sr0.9La0.1CuO2 high-T(c) superconductor (HTS).
View Article and Find Full Text PDFMagnetization measurements under hydrostatic pressure up to 8 kbar in the pyrochlore superconductor RbOs2O6 (T(c) approximately or equal 6.3 K at p=0) were carried out. A positive pressure effect on T(c) with dT(c)/dp=0.
View Article and Find Full Text PDF© LitMetric 2025. All rights reserved.