Publications by authors named "Shengdao Shan"

Microorganisms harvest energy from agricultural waste by degrading its structure. By comparing with Trichoderma reesei QM6a in cellulase production, straw deconstruction and transcriptome response, Trichoderma asperellum T-1 was identified to be prioritized for the fermentation of natural straw. Cellulase activity of T-1 was 50%-102% higher than QM6a.

View Article and Find Full Text PDF

High-risk antibiotic-resistant bacteria (ARB) and their accompanying antibiotic resistance genes (ARGs) seriously threaten public health. As a crucial medium for ARB and ARGs spread, soils with biogas slurry have been widely investigated. However, few studies focused on high-risk multi-drug resistant bacteria (MDRB) and their associated ARGs.

View Article and Find Full Text PDF

With increasing global awareness of soil health, attention must be paid to fluorine exposure in soils, which poses a threat to human health. Therefore, this study aimed to study the fluorine adsorption characteristics of swine manure and straw biochars and their impact on fluorine adsorption-desorption in soil with batch experiments. The biochar samples originated from high-temperature anaerobic cracking of swine manure (350°C, 500°C, and 650°C) and straw (500°C).

View Article and Find Full Text PDF

Agricultural application of pyrolysis‑carbonized perishable wastes can target reduction treatment and resource utilization of the wastes. However, potential undesirable impact has rarely been assessed. In this study, the adverse effect of perishable waste biochars (PWB) from different pyrolysis temperatures on Escherichia coli (E.

View Article and Find Full Text PDF

Carbon materials are commonly used for soil carbon sequestration and fertilization, which can also affect crop growth by manipulating the rhizosphere bacterial community. However, the comparison of the differences between active carbon (e.g.

View Article and Find Full Text PDF

Using swine manure biochar and biogas slurry in agriculture proves to be an effective strategy for soil improvement and fertilization. In this study, a pot trial on the growth of lotus root was conducted to investigate the persistent effects of applying 350°C swine manure biochar (1% and 2%) and biogas slurry (50% and 100%) on soil nitrogen nutrient and lotus root quality. The results showed that compared to chemical fertilizer alone (A0B0), swine manure biochar significantly increased soil nitrogen content after one year of application.

View Article and Find Full Text PDF

Microplastics (MPs) are now prevalent in aquatic ecosystems, prompting the use of constructed wetlands (CWs) for remediation. However, the interaction between MPs and CWs, including removal efficiency, mechanisms, and impacts, remains a subject requiring significant investigation. This review investigates the removal of MPs in CWs and assesses their impact on the removal of carbon, nitrogen, and phosphorus.

View Article and Find Full Text PDF

PFAS, recognized as persistent organic pollutants, present risks to both the ecological environment and human health. Studying PFASs in surface water yields insights into pollution dynamics. However, existing research on PFASs surface water pollution in China often focuses on specific regions, lacking comprehensive nationwide analyses.

View Article and Find Full Text PDF

Microalgae play a significant impact in the biogeochemical cycle of Mn(II) in the aquatic ecosystem. Meanwhile, the inflow of biochar into the water bodies is bound to impact the aquatic organisms. However, the influence of biochar on the manganese transformation in algae-rich water has not drawn much attention.

View Article and Find Full Text PDF

Biogas production causes vast amounts of biogas slurry (BS). Application of BS to croplands can substitute chemical fertilizers while result in higher ammonia emissions. Tremendous variation of ammonium concentration in different BSs induces imprecise substitution, while concentrated BS holds higher and more stable ammonium.

View Article and Find Full Text PDF

The current study generated co-pyrolysis biochar by pyrolyzing rice straw and pig manure at 300 °C and subsequently applying it in a field. Co-pyrolysis biochar demonstrated superior efficiency in mitigating agricultural non-point source pollution compared to biochar derived from individual sources. Furthermore, it displayed notable capabilities in retaining and releasing nutrients, resulting in increased soil levels of total nitrogen, total phosphorus, and organic matter during the maturation stage of rice.

View Article and Find Full Text PDF

Based on laboratory simulation experiments and metagenomic analysis, this study tracked the transmission of antibiotic resistance genes (ARGs) from swine manure (SM) to biogas residue and then to soil (biogas residue as organic fertilizer (OF) application). ARGs were abundant in SM and they were assigned to 11 categories of antibiotics. Among the 383 ARG subtypes in SM, 43 % ARG subtypes were absent after anaerobic digestion (AD), which avoided the transfer of these ARGs from SM to soil.

View Article and Find Full Text PDF

This study conducted a two-year experiment to investigate the impacts of biochar with various temperatures (350 °C, 500 °C, and 650 °C), on the reduction of pollutants in agricultural runoff and the enhancement of soil fertility. The results showed that the biochar significantly reduced the concentrations of total nitrogen and total phosphorus in farmland runoff. Moreover, higher-temperature biochar demonstrated greater efficacy in decreasing pollutants in farmland drainage.

View Article and Find Full Text PDF

Manganese (Mn) is a critical element in soils, essential to plant growth. Long-term and intensively managed Lei bamboo (Phyllostachys violascens) stands are usually subjected to severe soil acidification and Mn activation. However, Mn migration from topsoil to deep soil induced by severe soil acidification was poorly recognized and studied.

View Article and Find Full Text PDF

Sugarcane mosaic virus (SCMV) causes mosaic disease in crops such as maize and sugarcane by its vector-an aphid-and is transmitted top-down into the root system. However, understanding of the effects of the aphid-borne virus on root-associated microbes after plant invasion remains limited. The current project investigated maize root-associated (rhizosphere and endosphere) bacterial communities, potential interspecies interaction, and assembly processes in response to SCMV invasion based on 16S rRNA gene amplicon sequencing.

View Article and Find Full Text PDF

Rampant use of antibiotics has caused a rapid dissemination of antibiotic resistance genes (ARGs) in environment, posing great threats to ecosystems and human health. Applying biochar (BC) in natural systems to combat the spread of ARGs arises as an attention-grabbing solution. Unfortunately, the effectiveness of BC is still unmanageable due to the incomprehensive knowledge over correlations between BC properties and extracellular ARGs transformation.

View Article and Find Full Text PDF

Layered double hydroxide-biochar composites (LDH@BCs) have been developed for ammonia nitrogen (AN) and phosphorus (P) removal from wastewater. Improvement of LDH@BCs was limited due to the lack of comparative evaluation based on LDH@BCs characteristics and synthetic methods and information on the adsorption properties of LDH@BCs for N and P from natural wastewater. In this study, MgFe-LDH@BCs were synthesized by three different co-precipitation procedures.

View Article and Find Full Text PDF

Antibiotic residues pose a risk to the agricultural application of liquid digestate. In our previous study, photocatalysis was employed to degrade the antibiotics in liquid digestate and observed that the removal efficiency of TC, OTC, and CTC was up to 94.99%, 88.

View Article and Find Full Text PDF

Aquatic vegetables, including lotus root, water spinach, cress, watercress and so on, have been cultivated as commercial crops for a long time. Though aquatic vegetables have great edible and medicinal values, the increasing demands for aquatic vegetables with high quality have led to higher requirements of their soil and water environments. Unfortunately, the soil and water environment often face many problems such as nutrient imbalance, excessive fertilization, and pollution.

View Article and Find Full Text PDF

The role of biochar-microbe interaction in plant rhizosphere mediating soil-borne disease suppression has been poorly understood for plant health in field conditions. Chinese ginseng ( C. A.

View Article and Find Full Text PDF

Nanoplastics (NPs) pollution has become an emerging threat to the aquatic environment and its organisms. The removal of NPs from contaminated water is a global challenge. In this study, an efficient and reusable composite was prepared from cetyltrimethylammonium bromide (CTAB) modified magnetic biochar.

View Article and Find Full Text PDF

The migration of extracellular antibiotic resistance genes (eARGs) in porous media is an important pathway for ARGs to spread to the subsoil and aquifer. Biochar (BC) has been widely used to reduce the mobility of soil contaminants, however, its effect on the mobility of eARGs in porous media and the mechanisms are largely unknown. Herein, the effects of BCs synthesized from wheat straw and corn straw at two pyrolysis temperatures (300 °C and 700 °C) on the transport of plasmids-carried eARGs in sand column were investigated.

View Article and Find Full Text PDF

The production of ginseng, an important Chinese medicine crop, has been increasingly challenged by soil degradation and pathogenic disease under continuous cropping in Northeast China. In a field experiment, an Alfisol garden continuously cropped with Chinese ginseng ( C. A.

View Article and Find Full Text PDF