This paper reports a new method to generate stable and high-brightness electroluminescence (EL) by subsequently growing large/small grains at micro/nano scales with the configuration of attaching small grains on the surfaces of large grains in perovskite (MAPbBr) films by mixing two precursor solutions (PbBr + MABr and Pb(Ac)·3HO + MABr). Consequently, the small and large grains serve, respectively, as passivation agents and light-emitting centers, enabling self-passivation on the defects located on the surfaces of light-emitting large grains. Furthermore, the light-emitting states become linearly polarized with maximal polarization of 30.
View Article and Find Full Text PDFBackground: (-)-Gallocatechin gallate (GCG) shows multi-bioactivities. Its stability, however, has not been investigated systematically yet. Therefore, the objective of this study was to characterize the stability of GCG and to find ways to stabilize it in biological assays.
View Article and Find Full Text PDFJ Chromatogr B Analyt Technol Biomed Life Sci
February 2019
The presence of α‑dicarbonyl compounds (α-DCs) in vivo has been associated with the development of complications of diabetes mellitus (DM) and also with other chronic diseases. Therefore, quantitative analysis of α-DCs in body fluids is crucial to understand their roles in the formation of these chronic diseases. We established in this study a practical HPLC-UV method to measure 3‑deoxyglucosone (3-DG), glyoxal (GO), methylglyoxal (MGO), diacetyl (DA), and pentane‑2,3‑dione (PD) in blood plasma using 4‑(2,3‑dimethyl‑6‑quinoxalinyl)‑1,2‑benzenediamine (DQB) as a derivatizing reagent.
View Article and Find Full Text PDF