Publications by authors named "Shengao Jing"

Secondary organic aerosol (SOA) formation from gasoline vehicles spanning a wide range of emission types was investigated using an oxidation flow reactor (OFR) by conducting chassis dynamometer tests. Aided by advanced mass spectrometric techniques, SOA precursors, including volatile organic compounds (VOCs) and intermediate/semivolatile organic compounds (I/SVOCs), were comprehensively characterized. The reconstructed SOA produced from the speciated VOCs and I/SVOCs can explain 69% of the SOA measured downstream of an OFR upon 0.

View Article and Find Full Text PDF

To ensure good air quality during the China International Import Expo (CIIE) event, stringent emission-reduction measures were implemented in Shanghai. To assess the efficacy of these measures, this study measured typical categories of intermediate/semi volatile organic compounds (I/SVOCs), including alkanes (C-C n-alkanes and pristane), EPA-priority polycyclic aromatic hydrocarbons (PAHs), alkylnaphthalenes, benzothiazole (BTH) and chlorobenzenes (CBs), at an urban site of Shanghai before and during two CIIE events (2019 and 2020; non-CIIE versus CIIE). The average concentrations of alkanes and PAHs during both 2019 and 2020 CIIE events decreased by approximately 41% and 17%, respectively, compared to non-CIIE periods.

View Article and Find Full Text PDF

How did the motorcycle emissions evolve during the economic development in China? To address data gaps, this study firstly measured the volatile organic compound (VOC) and intermediate-volatility organic compound (IVOC) emissions from motorcycles. The results confirmed that the emission control of motorcycles, especially small-displacement motorcycles, significantly lagged behind other gasoline-powered vehicles. For the China IV motorcycles, the average VOC and IVOC emission factors (EFs) were 2.

View Article and Find Full Text PDF

We analyzed two data sets of atmospheric formaldehyde (FA) at an urban site in the Shanghai megacity during the summer of 2017 and the winter of 2017/18, with the primary objective of determining the emission ratio of formaldehyde versus carbon monoxide (CO). Through the photochemical age method and the minimum R squared (MRS) method, we derived the summer urban formaldehyde release ratios of 3.37 ppbv (ppmv of CO) and 4.

View Article and Find Full Text PDF

Ozone (O) pollution is becoming the primary air pollution issue with the large decrease in fine particulate concentrations in eastern China. The development of widely recognized policies for controlling O pollution episodes is urgent. This study aims to provide actionable and comprehensive suggestions for O control policy development, with an emphasis on the precursor emission reductions.

View Article and Find Full Text PDF

Monocyclic aromatic hydrocarbons (MAHs) and polycyclic aromatic hydrocarbons (PAHs) are both well known as hazardous air pollutants and also important anthropogenic precursors of tropospheric ozone (O) and secondary organic aerosols (SOA). In recent years, there have been intensive studies covering MAHs emission from various sources and their behavior under stimulated photochemical conditions. Yet in-situ measurements of PAHs presence and variations in ambient air are sparse.

View Article and Find Full Text PDF

Oxidation of volatile organic compounds (VOCs) forms oxygenated organic molecules (OOMs), which contribute to secondary pollution. Herein, we present measurement results of OOMs using chemical ionization mass spectrometry with nitrate as the reagent ion in Shanghai. Compared to those in forests and laboratory studies, OOMs detected at this urban site were of relatively lower degree of oxygenation.

View Article and Find Full Text PDF

Both concentrations and emissions of many air pollutants have been decreasing due to implement of control measures in China, in contrast to the fact that an increase in emissions of non-methane hydrocarbons (NMHCs) has been reported. This study employed seven years continuous NMHCs measurements and the related activities data of Shanghai, a megacity in China, to explore evolution of emissions and effectiveness of air pollution control measures. The mixing ratio of NMHCs showed no statistical interannual changes, of which their compositions exhibited marked changes.

View Article and Find Full Text PDF

The Community Multiscale Air Quality model (CMAQv5.2) was implemented to investigate the sources and sinks of oxygenated volatile organic compounds (OVOCs) during a high O and high PM season in the Yangtze River Delta (YRD) region, based on constraints from observations. The model tends to overpredict non-oxygenated VOCs and underpredict OVOCs, which has been improved with adjusted emissions of all VOCs.

View Article and Find Full Text PDF

As one of important precursors of secondary organic aerosol (SOA), intermediate volatile organic compounds (IVOCs) have attracted much attention in recent years. Most of the previous studies however largely focused on characteristics of IVOCs from different emission sources, while data from field observations to study their temporal variations was limited for lacking the sufficient time resolution monitoring data. In this study, an online thermal desorption-gas chromatography/mass spectrometry (TD-GC/MS) method was developed to generate monitor data with a three-hour time resolution for gaseous atmospheric IVOCs.

View Article and Find Full Text PDF

Secondary organic aerosol, formed through atmospheric oxidation processes, plays an important role in affecting climate and human health. In this study, we conducted a comprehensive campaign in the megacity of Shanghai during the 2019 International Import Expo (EXPO), with the first deployment of a chemical ionization─Orbitrap mass spectrometer for ambient measurements. With the ultrahigh mass resolving power of the Orbitrap mass analyzer (up to 140,000 Th/Th) and capability in dealing with massive spectral data sets by positive matrix factorization, we were able to identify the major gas-phase oxidation processes leading to the formation of oxygenated organic molecules (OOM) in Shanghai.

View Article and Find Full Text PDF

Identification of air toxics emitted from light-duty gasoline vehicles (LDGVs) is expected to better protect human health. Here, the volatile organic compound (VOC) and intermediate VOC (IVOC) emissions in the high-emitted start stages were measured on a chassis dynamometer under normal and extreme temperatures for China 6 LDGVs. Low temperature enhanced the emission rates (ERs) of both VOCs and IVOCs.

View Article and Find Full Text PDF

Ground-level O pollution has been continuously worsening in China despite gradual improvement in other major pollutant levels. Understanding the sensitivity of O production to its precursors (OPS) is a prerequisite for formulating effective O control measures, but this has been hampered by significant discrepancies in OPS produced by traditional identification approaches using observation-based models (OBM) and emission-based models (EBM). In this study, by applying OBM and EBM in parallel within a month having significant O pollution in Shanghai, China, we demonstrated that a lack of carbonyl input, overestimation in NO monitoring data, and differences in simulation period and emission reduction area were the core factors leading to OPS discrepancies, and that a reliable OPS cannot be obtained unless these factors are reconciled.

View Article and Find Full Text PDF

A modified community multiscale air quality model, which can simulate the regional distributions of 2,3-dihydroxy-4-oxopentanoic acid (DHOPA), a marker species for monoaromatic secondary organic aerosol (SOA), was applied to assess the applicability of using the DHOPA to aromatic SOA mass ratio () from smog chamber experiments to estimate aromatic SOA during a three-week wintertime air quality campaign in urban Shanghai. The modeled daily DHOPA concentrations based on the chamber-derived mass yields agree well with the organic marker field measurements ( = 0.79; MFB = 0.

View Article and Find Full Text PDF

In this study, real-time measurement of Volatile Organic Compounds (VOCs) was conducted at an urban site in Changzhou, a typical corridor city in the Yangtze River Delta (YRD) region in China, by Proton-Transfer-Reaction Time-of-Flight Mass Spectrometry (PTR-ToF-MS) during 2019 China International Import Expo (CIIE) episode. An improved method based on Air Quality Index (AQI) value is applied to identify polluted and clean periods. Diurnal pattern of VOC levels revealed elevated photochemical reactivity during polluted periods.

View Article and Find Full Text PDF

Real-world vehicle emission factors (EFs) for the total intermediate volatile organic compounds (total-IVOCs) and volatile organic compounds (VOCs) from mixed fleets of vehicles were quantified in the Yangtze tunnel in Shanghai. Relationships of EFs of IVOCs with fleet compositions and vehicle speed as well as secondary organic formation potentials (SOAFPs) from IVOCs and VOCs were studied. Multiple linear regression (MLR) was used to estimate EFs of total-IVOCs for gasoline and diesel vehicles.

View Article and Find Full Text PDF
Article Synopsis
  • - Volatile organic compounds (VOCs) are significant contributors to ozone and particulate matter pollution, particularly from industrial parks in China, which have not been extensively studied.
  • - A study measuring VOC levels around industrial parks in the Yangtze River Delta found average concentrations of 183 μg·m, with peaks reaching up to 12,006 μg·m, and highlighted that toluene, xylene, and benzene were the most prevalent compounds.
  • - Results indicated that VOC levels were highest in textile industrial parks, while electronics parks had the lowest, and the measured species accounted for only about 50% of the total VOCs, suggesting underestimation of pollution in these areas.
View Article and Find Full Text PDF

Atmospheric peroxyacetyl nitrate (PAN) and ozone (O) are two typical indicators for photochemical pollution that have adverse effects on the ecosystem and human health. Observation networks for these pollutants have been expanding in developed regions of China, such as North China Plain (NCP) and Pearl River Delta (PRD), but are sparse in Yangtze River Delta (YRD), meaning their concentration and influencing factors remain poorly understood. Here, we performed a one-year measurement of atmospheric PAN, O, particulate matter with aerodynamic diameter smaller than 2.

View Article and Find Full Text PDF

The ambient concentration of 122 volatile organic compound (VOC) species were continuously measured in urban Hangzhou, China from May 2018 to April 2019. The average mixing ratio of VOCs was (59.4±23.

View Article and Find Full Text PDF

Ambient carbonyl compounds play an important role in tropospheric atmospheric chemistry. Primary emissions and photochemical formation are both sources of carbonyls, and therefore it is challenging work to analyze their sources. In this study, carbonyl sources were apportioned using the source tracer ratio method (STR) and positive matrix factorization model (PMF) based on offline carbonyls observations at a site in Nanjing during March 2017.

View Article and Find Full Text PDF

Air quality in megacities is significantly impacted by emissions from vehicles and other urban-scale human activities. Amid the outbreak of Coronavirus (COVID-19) in January 2020, strict policies were in place to restrict people's movement, bringing about steep reductions in pollution activities and notably lower ambient concentrations of primary pollutants. In this study, we report hourly measurements of fine particulate matter (i.

View Article and Find Full Text PDF

An intensive observation of ambient volatile organic compounds (VOCs) was carried out in Hangzhou, a key city in the Yangtze River Delta, during a typical photochemical pollution episode from September 14-23, 2018. The analysis results of 80 effective samples showed that the average concentration of 122 compounds of VOCs was (59.5±19.

View Article and Find Full Text PDF

The International Agency of Research on Cancer identifies high-temperature frying, which features prominently in Chinese cooking, as producing group 2A carcinogens. This study simultaneously characterized particulate and gaseous-phase cooking emissions, monitored their reactive oxygen species (ROS) concentrations, and evaluated their impact on genetic damage and expression in exposed human bronchial epithelial cells. Five types of edible oil, three kinds of seasonings, and two dishes were assessed.

View Article and Find Full Text PDF

The production of secondary organic aerosols (SOA) from toluene photochemistry in Shanghai, a megacity of China, was estimated by two approaches, the parametrization method and the tracer-based method. The temporal profiles of toluene, together with other fifty-six volatile organic compounds (VOCs), were characterized. Combing with the vapor wall loss corrected SOA yields derived from chamber experiments, the estimated toluene SOA by the parametrization method as embodied in the two-product model contributes up to ∼40% of the total SOA budget during summertime.

View Article and Find Full Text PDF
Article Synopsis
  • Volatile organic compounds (VOCs) are harmful to human health and can negatively affect air quality, with cooking being a significant source of these emissions.
  • A study analyzed VOC emissions from different cooking oils, seasonings, and dishes using gas chromatography-mass spectrometry (GC-MS), revealing varying emission factors and chemical compositions.
  • The findings showed that cooking oils emit halogenated hydrocarbons and alkanes, while seasonings primarily release alkanes, with certain dishes like chili fried meat generating higher emissions compared to others like tomato scrambled eggs.
View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionj2fdu4fnubbfd20vr9gnstorbi753gf7): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once