Publications by authors named "ShengJun Mao"

Recombinant tissue-type plasminogen activator (rt-PA), the primary drug for acute ischemic stroke (IS), has a narrow therapeutic window and carries a potential risk of hemorrhagic transformation (HT). Without rt-PA administration, patients may suffer permanent cerebral ischemia. Alpha-asarone (ASA), a natural compound derived from Acorus tatarinowii Schott, exhibits diverse neuropharmacological effects.

View Article and Find Full Text PDF

Migraine is a highly prevalent neurological disorder. Alpha-asarone (ASA), a major active component found in Acorus tatarinowii, plays a crucial role in analgesia and anti-inflammation for neuropathic pain. This study aimed to assess the efficacy of ASA against migraine and elucidate its potential mechanisms using a well-established inflammatory soup (IS) migraine female rat model.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by decreased learning ability and memory deficits. Our previous findings suggested that benzene, 1,2,4-trimethoxy-5-(2-methyl-1-propen-1-yl) (BTY) can ameliorate the dysfunction of GABAergic inhibitory neurons associated with neurological diseases. On this basis, we investigated the neuroprotective effect of BTY on AD and explored the underlying mechanism.

View Article and Find Full Text PDF

Early brain injury (EBI) is the leading cause of poor prognosis for patients suffering from subarachnoid hemorrhage (SAH), particularly learning and memory deficits in the repair phase. A recent report has involved calcium/calmodulin-dependent protein kinase II (CaMKII) in the pathophysiological process underlying SAH-induced EBI. Alpha-asarone (ASA), a major compound isolated from the Chinese medicinal herb Acorus tatarinowii Schott, was proven to reduce secondary brain injury by decreasing CaMKII over-phosphorylation in rats' model of intracerebral hemorrhage in our previous report.

View Article and Find Full Text PDF

Objectives: Boropinol-B is a phenylpropanoid compound originally isolated from Boronia pinnata Sm. (Rutaceae). This study aimed to evaluate the sedative-hypnotic effects of Boropinol-B and explore the underlying mechanisms.

View Article and Find Full Text PDF

Ischemic stroke is the leading cause of death and disability worldwide. The activation of gamma-aminobutyric acid A (GABA) receptors can attenuate cerebral ischemia-reperfusion injury (CI/RI). Boropinol-B, originally isolated from Boronia pinnata Sm.

View Article and Find Full Text PDF

The highest disability rates and mortality among neurodegenerative diseases were caused by intracerebral hemorrhage (ICH). We previously proved that Benzene, 1,2,4-trimethoxy-5-(2-methyl-1-propen-1-yl) (BTY) has an inhibitory effect on sodium ion channel and an activation effect on GABA receptor, which were related to the brain injury. Based on this, we aimed to investigate BTY's neuroprotection on intracerebral hemorrhage and its underlying mechanism.

View Article and Find Full Text PDF

Background: Secondary brain injury (SBI) has been confirmed as a leading cause for the poor prognosis of patients suffering from intracerebral hemorrhage (ICH). SBI co-exists in ischemia and hemorrhagic stroke. Neuro-excitotoxicity is considered the initiating factor of ICH-induced SBI.

View Article and Find Full Text PDF

Acute myeloid leukemia (AML) remains a threatening disease due to severe complications, drug resistance, and high recurrence rates. Many drug combinations have demonstrated enhanced therapeutic effects in clinical practice. However, it requires complicated dosing regimens and is accompanied by increased toxicity.

View Article and Find Full Text PDF

Alpha-asarone, a major active component isolated from Acorus gramineus, can affect brain functions and behaviors by multiple mechanisms. However, the effect of alpha-asarone on cerebral ischemia-reperfusion (CIR) stroke has not been reported. The present study aimed to investigate the neuroprotective effect of alpha-asarone and the involved mechanisms against CIR stroke.

View Article and Find Full Text PDF

In the present study, we compared the antiepileptic effects of α-asarone derivatives to explore their structure-activity relationships using the PTZ-induced seizure model. Our research revealed that electron-donating methoxy groups in the 3,4,5-position on phenyl ring increased antiepileptic potency but the placement of other groups at different positions decreased activity. Besides, in allyl moiety, the optimal activity was reached with either an allyl or a 1-butenyl group in conjugation with the benzene ring.

View Article and Find Full Text PDF

γ-Aminobutyric acid type-A receptors (GABARs) play a critical role in neural transmission by mediating the inhibitory neural firing and are the target of many psychiatric drugs. Among them, propofol is one of the most widely used and important general anesthetics in clinics. Recent advances in structural biology revealed the structure of a human GABAR in both open and closed states.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a progressive neurodegenerative disease most often characterized by memory impairment and cognitive decline. Alpha-asarone has been reported to have the potential to treat AD. Our previous studies have found that alpha-asarone improves aged rats' cognitive function by alleviating neuronal excitotoxicity via type A gamma-aminobutyric acid (GABA) receptors.

View Article and Find Full Text PDF

Graft-versus-host disease (GVHD) is a frequent complication following allogeneic hematopoietic stem cell transplantation (allo-HSCT). The application of mesenchymal stromal cells (MSCs) to treat GVHD patients refractory to initial steroid treatment has led to impressive results. In this study, we explored the potential of human umbilical mesenchymal stem cells (HUMSCs) transfected with the IFN-γ gene of human (h)/mice (m) (HUMSCs + Ad-h/mIFN-γ) carried by a recombinant adenoviral vector in the prevention and treatment of GVHD.

View Article and Find Full Text PDF

The purpose of this study was to develop an injectable submicron emulsion of eugenol (Eug-SE) and to investigate its antagonism on epilepsy. The formulation was optimized using a complete randomized design, comprising 5% (w/v) eugenol, 5% (w/v) soybean oil, 1.2% (w/v) egg phosphatidylcholine, 0.

View Article and Find Full Text PDF

The success of a structure-based drug is highly dependent on a known binding pose of the protein-ligand system. However, this is not always available. In this study, we set out to explore the applicability of the popular and easy-to-use MD-based MM/GBSA method to determine the binding poses of known FGFR inhibitors.

View Article and Find Full Text PDF

Alzheimer's disease (AD), the most common form of dementia, still lacks effective treatment at present. Alpha-asarone (ASA) is the major compound isolated from the Chinese medicinal herb Acorus gramineus. It has been reported to enhance cognitive function in rodent models, yet its mechanism was not fully understood.

View Article and Find Full Text PDF

Most antibody-based therapies for AML target a single antigen on the surface of AML cells, which has a limited clinical benefit due to unsatisfied targeting ability and antigen-negative escape. Here we described the development and specific targeting of daunorubicin (DNR)-loaded CD123/CD33 dual-antibody modified liposome, CD123/CD33-LP-DNR. Since the majority of AML cells carries at least one of the antigens of CD123 and CD33, it is promising to treat AML using the dual-targeting agents.

View Article and Find Full Text PDF

Multidrug resistance is considered as a major obstacle for effective tumour chemotherapy. With the ability to deliver drugs into tumour cells, microparticles may act as a drug delivery vehicle to overcome drug resistance. In the present study, we developed an approach employing daunorubicin-loaded microparticles to surmount the drug resistance in leukaemia.

View Article and Find Full Text PDF

In this study, the tanshinone ⅡA loaded albumin nanoparticles were prepared by high pressure homogenization method. The formulation was optimized by central composite design-response surface method (CCD-RSM), with the particle size, encapsulation efficiency, and drug loading as indexes to investigate their in vitro anti-tumor effect. The results showed that the prepared nanoparticles had uniformly spherical morphology and uniform particle size distribution.

View Article and Find Full Text PDF

In the study, we developed a novel formulation, CD123 mono-antibody (mAb) modified tanshinone ⅡA loaded immunoliposome (CD123-TanⅡA-ILP) to achieve the targeted drug delivery for leukemia cells. Orthogonal test was used to optimize liposome preparation, and the TanⅡA-loaded PEGylated liposomes (TanⅡA-LP) of S100PC-Chol-(mPEG2000-DSPE)-TanⅡA at 19∶5∶1∶1 molar ratio were prepared by the thin film hydration-probe ultrasonic method. A post-insertion method was applied to prepare CD123-TanⅡA-ILP via thiolated mAb conjugated to the terminal of maleimide-PEG2000-DSPE.

View Article and Find Full Text PDF

The application of the tumor targeting antibody-mediated immunoliposomes (ILP) provides us a potential effective strategy for treating malignancies, such as acute myeloid leukemia (AML). CD123, which is specifically overexpressed on AML cells, plays an important role in cell cycling and enhances the cell resistance to the apoptotic stimuli. Given such a unique role of CD123 in AML cells, we aim to develop a novel drug targeting delivery system using CD123 monoclonal antibody (mAb) in this study.

View Article and Find Full Text PDF