Due to the rapid decline in oceanic fish stock, ω-3 fatty acid (C18:3) has attracted serious attention and, hence, the identification of genotypes with high ω-3 content has become the main objective of Brassica napus (rapeseed) breeding. A candidate genes association study permitted us to delineate a genomic region linked to ω-3 content, offering a detailed understanding of the complex genetic mechanism of fatty acid biosynthesis in B. napus.
View Article and Find Full Text PDFBrassica napus (rapeseed) serves as a main source of edible oil, and the oil's quality is mainly determined by the relative proportions of fatty acids. A high oleic acid concentration in B. napus oil increases its shelf life and oxidative stability.
View Article and Find Full Text PDFSclerotinia stem rot (SSR) caused by Sclerotinia sclerotiorum is a devastating disease of rapeseed (Brassica napus L.). To date, the genetic mechanisms of rapeseed' interactions with S.
View Article and Find Full Text PDFThe disease caused by has traditionally been difficult to control, resulting in tremendous economic losses in oilseed rape (). Identification of important genes in the defense responses is critical for molecular breeding, an important strategy for controlling the disease. Here, we report that a mitogen-activated protein kinase gene, , plays an important role in the defense against in oilseed rape.
View Article and Find Full Text PDFBrassica napus L. is an important oil crop worldwide and is the main raw material for biofuel. Seed weight and seed size are the main contributors to seed yield.
View Article and Find Full Text PDFThis article proposes a meliorated multi-frequency band pyroelectric sensor for detecting subjects with various velocities, namely extending the sensing frequency under good performance from electrical signals. A tactic, gradually increasing thickness of the ZnO layers, is used for redeeming drawbacks of a thicker pyroelectric layer with a tardy response at a high-frequency band and a thinner pyroelectric layer with low voltage responsivity at a low-frequency band. The proposed sensor is built on a silicon substrate with a thermal isolation layer of a silicon nitride film, consisting of four pyroelectric layers with various thicknesses deposited by a sputtering or aerosol deposition (AD) method and top and bottom electrodes.
View Article and Find Full Text PDFA methodology is proposed for designing a multi-frequency band pyroelectric sensor which can detect subjects with various frequencies or velocities. A structure with dual pyroelectric layers, consisting of a thinner sputtered ZnO layer and a thicker aerosol ZnO layer, proved helpful in the development of the proposed sensor. The thinner sputtered ZnO layer with a small thermal capacity and a rapid response accomplishes a high-frequency sensing task, while the thicker aerosol ZnO layer with a large thermal capacity and a tardy response is responsible for low-frequency sensing tasks.
View Article and Find Full Text PDFTransposons or transposable elements (TEs) are ubiquitous and most abundant DNA components in higher eukaryotes. Recent sequencing of the Brassica rapa and B. oleracea genomes revealed that the amplification of TEs is one of the main factors inducing the difference in genome size.
View Article and Find Full Text PDFIntroduction: Plant hormones are important signalling molecules that act at lower concentrations to regulate numerous plant physiological and developmental processes. In order to study the functions of plant hormones, it is necessary to develop a high-throughput and highly selective and sensitive method for determination of plant hormones.
Objective: Based on SPE-HPLC-ESI-MS/MS method, a highly selective and sensitive method for determination of six plant hormones in leaf tissue of oilseed rape was developed.
Background: The methylotrophic yeast, Pichia pastoris, offers the possibility to generate a high amount of recombinant proteins in a fast and easy way to use expression system. Being a single-celled microorganism, P. pastoris is easy to manipulate and grows rapidly on inexpensive media at high cell densities.
View Article and Find Full Text PDFIntroduction: Methyl jasmonate (MJA), which is a natrual hormonal regulator, is thought to be essential for the regulation of systemic defence responses. The information about MJA levels in plant tissues is helpful for the study of the disease resistance mechanism and genetically engineered cultivars with increased resistance. Therefore, the quantification of MJA levels in plant tissues by means of a sensitive and reliable method is of interest.
View Article and Find Full Text PDFSalicylic acid (SA) is a biological substance that acts as a phytohormone and plays an important role in signal transduction in plants. It is important to accurately and sensitively detect SA levels. A gold electrode modified with copper nanoparticles was used to assay the electrocatalytic oxidation of salicylic acid.
View Article and Find Full Text PDFOxidative bursts from plants play significant roles in plant disease defense and signal transduction; however, it has not hitherto been investigated on individual living plant cells. In this article, we fabricated a novel sensitive electrochemical sensor based on electrochemical deposition of Pt nanoparticles on the surface of carbon fiber microdisk electrodes via a nanopores containing polymer matrix, Nafion. The numerous hydrophilic nanochannels in the Nafion clusters coated on the electrode surface served as the molecular template for the deposition and dispersion of Pt, which resulted in the uniform construction of small Pt nanoparticles.
View Article and Find Full Text PDFOxidative burst is the rapid and transient production of large amounts of reactive oxygen species, including superoxide anion, hydrogen peroxide (H(2)O(2)), and hydroxyl radical. A rapid and simple technique was employed for in vivo detection of oxidative burst in oilseed rape (Brassica napus L.) leaves, using a modified electrode.
View Article and Find Full Text PDFOxalic acid (OA), a non-host-specific toxin secreted by Sclerotinia sclerotiorum during pathogenesis, has been demonstrated to be a major phytotoxic and pathogenic factor. Oxalate oxidase (OXO) is an enzyme associated with the detoxification of OA, and hence the introduction of an OXO gene into oilseed rape (Brassica napus L.) to break down OA may be an alternative way of increasing the resistance of the plant to Sclerotinia sclerotiorum.
View Article and Find Full Text PDF