Publications by authors named "Sheng-tung Huang"

Development of a reliable tool to detect hydrogen peroxide (HO) and rutin in food-derived products and bioactive flavonoids is essential for food safety. Nevertheless, food/drug-based real samples are complex matrices that affect the sensor's specificity and sensitivity. For this purpose, we developed a simple electrochemical detection platform using covalent organic framework‑silver nanoparticles (COF-AgNPs).

View Article and Find Full Text PDF

Pantetheinase is a key biomarker for the diagnosis of acute kidney injury and the monitoring of malaria progression. Currently, existing methods for sensing pantetheinase, also known as Vanin-1, show considerable potential but come with certain limitations, including their inability to directly sense analytes in turbid biofluid samples without tedious sample pretreatment. Here, we describe the first activity-based electrochemical probe, termed VaninLP, for convenient and specific direct targeting of pantetheinase activity in turbid liquid biopsy samples.

View Article and Find Full Text PDF

Bisphenols threaten human health and sensitive detection is crucial. The present study aims to develop ternary composites of copper metal-organic framework (Cu-MOF) with AuAg microstructures. The composite structure was formed by a galvanic displacement reaction and confirmed using SEM.

View Article and Find Full Text PDF

Developing quantitative biosensors of superoxide (O) and nitric oxide (NO) anion is crucial for pathological research. As of today, the main challenge for electrochemical detection is to develop high-selectivity nano-mimetic materials to replace natural enzymes. In this study, the dendritic-like morphological structure of silver organic framework (Ag-MOF) was successfully synthesized via a solvothermal strategy.

View Article and Find Full Text PDF

The development of artificial receptors has great significance in measurement science and technology. The need for a robust version of natural receptors is getting increased attention because the cost of natural receptors is still high along with storage difficulties. Aptamers, imprinted polymers, and nanozymes are some of the matured artificial receptors in analytical chemistry.

View Article and Find Full Text PDF

γ-Glutamyl transpeptidase (GGT) is a key biomarker for cancer diagnosis and post-treatment surveillance. Currently available methods for sensing GGT show high potential, but face certain challenges including an inability to be used to directly sense analytes in turbid biofluid samples such as whole blood without tedious sample pretreatment. To overcome this issue, activity-based electrochemical probes (GTLP and GTLPOH) were herein developed for a convenient and specific direct targeting of GGT activity in turbid biosamples.

View Article and Find Full Text PDF

Tannic acid (TA) is a water-soluble polyphenol and used in beverages, medical fields as clarifying and additive agents. In daily life, TA is unavoidable, and excessive consumption of tannin containing foods can harm health. Thus, rapid and sensitive quantification is highly necessary.

View Article and Find Full Text PDF

For clinical research, the precise measurement of hydrogen peroxide (HO) and glucose (Glu) is of paramount importance, due to their imbalanced concentrations in blood glucose, and reactive oxygen species (ROS) play a huge role in COVID-19 viral disease. It is critical to construct and develop a simple, rapid, flexible, long-term, and sensitive detection of HO and glucose. In this paper, we have developed a unique morphological structure of MOF(Cu) on a single-walled carbon nanotube-modified gold wire (swnt@gw).

View Article and Find Full Text PDF

Nanomaterials frequently draw a lot of interest in a variety of disciplines, including electrochemistry. Developing a reliable electrode modifier for the selective electrochemical detection of the analgesic bioflavonoid i.e.

View Article and Find Full Text PDF

A simple and rapid screening of biomarkers in clinical and food matrices is urgently needed to diagnose cardiovascular diseases. The cholesterol (Chol) and hydrogen peroxide (HO) are critical bio-indicators, which require more inventive detection techniques to be applied to real food, and bio-samples. In this study, a robust dual sensor was developed for Chol and HO using hybrid catalyst.

View Article and Find Full Text PDF
Article Synopsis
  • The yqiC gene in Salmonella enterica serovar Typhimurium is essential for colonizing human cells and regulates various genes related to pathogenicity and metabolism, but its specific role in nontyphoidal Salmonella interactions is still unclear.
  • RNA sequencing of ΔyqiC and wild-type strains revealed that yqiC influences the expression of genes involved in pathogenicity islands, electron transport chains, and energy metabolism, such as ATP generation and glycolysis.
  • The results showed that yqiC not only represses some gene expressions but is crucial for the expression of key operons and metabolic functions, indicating its significant role in Salmonella's ability to thrive under energy stress conditions.
View Article and Find Full Text PDF

Aminopeptidase N (APN/CD13) plays an important role in the growth and metastasis, of tumor, and is a potential biomarker for the post-treatment surveillance of cancer reoccurrence and progression of various malignancies. Thus, we have designed and prepared a convenient and ultrasensitive APN-targeting activity-based ratiometric electrochemical molecular substrate (Ala-AFC) for direct real-time monitoring of APN activity in biosamples. The APN in our experiment was used to hydrolyze the alanine moiety of the Ala-AFC probe and, as a result of this hydrolysis, realize concomitantly a cascade reaction to unmask the electrochemical reporter N-alkylated amino ferrocene (AAF).

View Article and Find Full Text PDF

Salmonella contamination is a major concern in food and public health safety, and carrying out episodic monitoring of Salmonella contamination in food and water bodies is essential for safeguarding public health and the economy. Therefore, there is an urgent need to develop an easy-to-operate Salmonella-targeting point-of-care detection platform. To this end, we designed two activity-based latent ratiometric electrochemical molecular substrates, denoted as Sal-CAF and Sal-NBAF, specifically for achieving easy, rapid, and selective profiling of Salmonella esterase (a Salmonella biomarker) under physiological conditions.

View Article and Find Full Text PDF

An efficient electrochemical biosensor has been developed for the simultaneous evaluation of DNA bases using AgNPs-embedded covalent organic framework (COF). The COF (p-Phenylenediamine and terephthalaldehyde) was synthesized by reflux (DMF; 150 °C; 12 h) and the nanoparticles were embedded from the aqueous solutions of AgNO and NaBH. The nanocomposite-modified COF was confirmed by spectral, microscopic, and electrochemical techniques.

View Article and Find Full Text PDF
Article Synopsis
  • Introducing ultrasound irradiation to the electrodeposition process enhances the properties of deposited films, while using supercritical CO improves surface quality due to its unique physical characteristics.
  • This study focuses on preparing copper films using an ultrasonic-assisted supercritical CO (US-SC-CO) method and compares them to films made through normal supercritical CO (SC-CO) and conventional methods.
  • The results indicated that films produced by the US-SC-CO technique displayed superior qualities, including better grain size, smoother surfaces, and enhanced corrosion resistance, due to the rapid cavitation implosion and improved removal of weakly adhered metal ions.
View Article and Find Full Text PDF

In this study, controlled growth of Ni-MOF was decorated in amino acid-functionalized graphene nanoplatelets (FxGnP) by a solvothermal approach. The synthesized nanocomposite was characterized by various spectral, microscopic, and electrochemical techniques. FE-SEM and TEM image results exhibited the sheet-like structure of FxGnP and spherical-like Ni-MOF with an average size of 5.

View Article and Find Full Text PDF

The ultrasonic-assisted electrodeposition process significantly improves the mechanical and electrochemical properties. Meanwhile, supercritical fluid technology also enhances the electrodeposition process with increased benefits, such as low surface tension, permeability, high diffusivity, and density, which improves the surface quality through grain refinement. In this study, Zn-Co films were prepared using the ultrasonic-assisted supercritical-CO (US-SC-CO) electrodeposition approach, and its pressure effect on the film was evaluated.

View Article and Find Full Text PDF

A copper-1,4-naphthalenedicarboxylic acid-based organic framework (Cu-NDCA MOF) with different morphologies was synthesized by solvothermal synthetic route via a simple protonation-deprotonation approach. The synthesized Cu-NDCA MOFs were analyzed by diverse microscopic and spectral techniques. The FE-SEM and TEM image results exhibited the flake-like (FL), partial anisotropic (PAT), and anisotropic (AT)-Cu-NDCA MOFs formation obtained at different pH (3.

View Article and Find Full Text PDF

Formaldehyde is a reactive carbonyl species (RCS) that is produced naturally in the human body via metabolic and epigenetic biochemical processes, yet in high concentrations is highly toxic to the environment as well as to living organisms. Therefore, we designed two ratiometric electrochemical molecular redox probes, Formaldehyde oxidative latent probe (FOLP) and dihydroxy-formaldehyde oxidative latent probe (HFOLP), for the selective profiling of endogenous formaldehyde. FOLP and HFOLP each underwent the aza-Cope reaction with formaldehyde followed by hydrolysis to eliminate unmask redox reporter N-alkylated aminoferrocene (AAF) to monitor their response current.

View Article and Find Full Text PDF

There is an urgent need to develop in situ sensors that monitor the continued release of H2S from biological systems to understand H2S-related pathology and pharmacology. For this purpose, we have developed a molybdenum disulfide supported double-layered zinc cobaltite modified carbon cloth electrode (MoS2-ZnCo2O4-ZnCo2O4) based electrocatalytic sensor. The results of our study suggest that the MoS2-ZnCo2O4-ZnCo2O4 electrode has excellent electrocatalytic ability to oxidize H2S at physiological pH, in a minimized overpotential (+0.

View Article and Find Full Text PDF

We report an optical biosensor using imine, 5-((anthrcene-9-ylmethylene) amino)-2,3dihydrophthalazine) 1-4-dione (ADD) for direct detection of ascorbic acid (AA) via FRET quenched. The ADD was successfully prepared by using simple ultra - sonication method, which was characterized by various spectroscopic techniques. The fluorescence intensity of ADD probe was drastically quenched in presence of AA, and shown excellent selectivity towards the detection of AA in presence of possible biological active interferences.

View Article and Find Full Text PDF

Designing and engineering nanocomposites with tailored physiochemical properties through teaming distinct components is a straightforward strategy to yield multifunctional materials. Here, we describe a rapid, economical, and green one-pot microwave synthetic procedure for the preparation of ternary nanocomposites carbon/polydopamine/Au nanoparticles (C/PDA/AuNPs; C = carbon nanotubes (CNTs), reduced graphene oxide (rGO)). No harsh reaction conditions were used in the method, as are used in conventional hydrothermal or high-temperature methods.

View Article and Find Full Text PDF

A ratiometric electrochemical molecular sensing platform for real-time quantification of extracellular hypochlorous acid (HClO) production has been developed based on a latent electrochemical probe aminoferrocene thiocarbamate (AFTC 3). The substrate AFTC consist of a masked redox reporter amino ferrocene (AF 4) linked with a dimethylthiocarbamate trigger via hydroxyl benzyl alcohol. The conceptual idea behind the probe design is based on a specific chemical interaction between HClO and dimethylthiocarbamate, which allows only HClO to unmask the probe to releases AF.

View Article and Find Full Text PDF

Leucine aminopeptidase (LAP) is an essential proteolytic enzyme and potential biomarker for liver malignancy. Overexpression of LAP is directly linked with some fatal physiological and pathological disorders. In this regard, we have designed an activity based electrochemical substrate leucine-benzyl ferrocene carbamate (Leu-FC) for selective profiling of LAP activity in live cells.

View Article and Find Full Text PDF

The objective of this study is to investigate the synergistic effects of acid etching and metal-ion chelation in dental smear layer removal using wasted derived chitosans. The wasted fruiting body was used to prepare both acid-soluble fungal chitosan (FCS) and alkali-soluble polysaccharide (ASP). To explore the effective irrigant concentration for smear layer removal, a chelating effect on ferrous ions was conducted.

View Article and Find Full Text PDF