Publications by authors named "Sheng-ce Tao"

Lipid metabolism reprogramming is critical for the initiation and progression of hepatocellular carcinoma (HCC). However, how the dysregulation of lipid metabolism contributes to HCC development remains largely unknown. Here, we report that the mA reader YTHDC1-mediated epigenetic regulation of the long noncoding RNA NEAT1 activates stearoyl-CoA desaturase (SCD)-associated lipid metabolic processes during HCC progression.

View Article and Find Full Text PDF

African swine fever (ASF) is a devastating disease caused by African swine fever virus (ASFV) and leads to significant economic losses in the pig farming industry. Given the absence of an effective vaccine or treatment, the mortality rate of ASF is alarmingly close to 100%. Consequently, the ability to rapidly and accurately detect ASFV on site and promptly identify infected pigs is critical for controlling the spread of this pandemic.

View Article and Find Full Text PDF

Characterizing the antibody reactome for circulating antibodies provide insight into pathogen exposure, allergies, and autoimmune diseases. This is important for biomarker discovery, clinical diagnosis, and prognosis of disease progression, as well as population-level insights into the immune system. The emerging technology phage display immunoprecipitation and sequencing (PhIP-seq) is a high-throughput method for identifying antigens/epitopes of the antibody reactome.

View Article and Find Full Text PDF

Glycosylation, a crucial posttranslational modification, plays a significant role in numerous physiological and pathological processes. Lectin microarrays, which leverage the high specificity of lectins for sugar binding, are ideally suited for profiling the glycan spectra of diverse and complex biological samples. In this review, we explore the evolution of lectin detection technologies, as well as the applications and challenges of lectin microarrays in analyzing the glycome profiles of various clinical samples, including serum, saliva, tissues, sperm, and urine.

View Article and Find Full Text PDF

Protein O-glycosylation, also known as mucin-type O-glycosylation, is one of the most abundant glycosylation in mammalian cells. It is initially catalyzed by a family of polypeptide GalNAc transferases (ppGalNAc-Ts). The trimeric spike protein (S) of SARS-CoV-2 is highly glycosylated and facilitates the virus's entry into host cells and membrane fusion of the virus.

View Article and Find Full Text PDF
Article Synopsis
  • - Messenger RNA vaccines typically don't target dendritic cells (DCs), which are crucial for presenting antigens effectively; this study focuses on a new approach to enhance DC targeting using engineered virus-like particles.
  • - These engineered particles are designed to deliver mRNA that instructs cells to produce the Spike protein of SARS-CoV-2 or herpes simplex virus proteins, allowing for more effective immune responses.
  • - When tested in mice, the DC-targeting mRNA vaccine produced significantly better immune responses compared to standard vaccines, providing stronger protection against both SARS-CoV-2 and herpes simplex virus 1.
View Article and Find Full Text PDF

CRISPR-based detection technologies have been widely explored for molecular diagnostics. However, the challenge lies in converting the signal of different biomolecules, such as nucleic acids, proteins, small molecules, exosomes, and ions, into a CRISPR-based nucleic acid detection signal. Understanding the detection of different biomolecules using CRISPR technology can aid in the development of practical and promising detection approaches.

View Article and Find Full Text PDF

Rapid and accurate detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is one of the most effective measures to control the coronavirus disease 2019 (COVID-19) pandemic. However, there is still lack of an ideal detection platform capable of high sample throughput, portability, and multiplicity. Herein, by combining Hive-Chip (capillary microarray) and reverse transcriptional loop-mediated isothermal amplification (RT-LAMP), we developed an iPad-controlled, high-throughput (48 samples at one run), portable (smaller than a backpack), multiplex (monitoring 8 gene fragments in one reaction), and real-time detection platform for SARS-CoV-2 detection.

View Article and Find Full Text PDF

Protein-biomolecule interactions play pivotal roles in almost all biological processes. For a biomolecule of interest, the identification of the interacting protein(s) is essential. For this need, although many assays are available, highly robust and reliable methods are always desired.

View Article and Find Full Text PDF

Type 2 diabetes mellitus (T2DM) is recognized as a serious public health concern with increasing incidence. The dipeptidyl peptidase-4 (DPP-4) inhibitor sitagliptin has been used for the treatment of T2DM worldwide. Although sitagliptin has excellent therapeutic outcome, adverse effects are observed.

View Article and Find Full Text PDF

The majority of people in China have been immunized with the inactivated viral vaccine BBIBP-CorV. The emergence of the Omicron variant raised the concerns about protection efficacy of the inactivated viral vaccine in China. However, longitudinal neutralization data describing protection efficacy against Omicron variant is still lacking.

View Article and Find Full Text PDF

COVID-19 is still unfolding, while many people have been vaccinated. In comparison to nucleic acid testing (NAT), antibody-based immunoassays are faster and more convenient. However, its application has been hampered by its lower sensitivity and the existing fact that by traditional immunoassays, the measurable seroconversion time of pathogen-specific antibodies, such as IgM or IgG, lags far behind that of nucleic acids.

View Article and Find Full Text PDF

Purpose: This review aims to summarize the technological advances in the field of antibody-based biomarker studies by proteome microarray and phage display. In addition, the possible development directions of this field are also discussed.

Experimental Design: We have focused on the antibody profiling by proteome microarray and phage display, including the technological advances, the tools/resources constructed, and the characteristics of both platforms.

View Article and Find Full Text PDF

The immunogenicity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) proteome is largely unknown. Here we describe a protocol for analyzing sera samples with SARS-CoV-2 proteome microarray. The proteins were expressed by either expression system or eukaryotic cell expression systems and obtained by affinity purification.

View Article and Find Full Text PDF

Introduction: The COVID-19 global pandemic is far from ending. There is an urgent need to identify applicable biomarkers for early predicting the outcome of COVID-19. Growing evidences have revealed that SARS-CoV-2 specific antibodies evolved with disease progression and severity in COIVD-19 patients.

View Article and Find Full Text PDF

Antibodies are one of the most important groups of biomolecules for both clinical and basic research and have been developed as potential therapeutics. Affinity is the key feature for biological activity and clinical efficacy of an antibody, especially of therapeutic antibodies, and thus antibody affinity improvement is indispensable and still remains challenging. To address this issue, we developed the Assisted Speed affINity-maturation Evolution SyStem (EASINESS) for continuous directed evolution of Ag-Ab interactions.

View Article and Find Full Text PDF

Coronavirus disease 2019 (COVID-19), which is caused by SARS-CoV-2, varies with regard to symptoms and mortality rates among populations. Humoral immunity plays critical roles in SARS-CoV-2 infection and recovery from COVID-19. However, differences in immune responses and clinical features among COVID-19 patients remain largely unknown.

View Article and Find Full Text PDF

The study of proteins circulating in blood offers tremendous opportunities to diagnose, stratify, or possibly prevent diseases. With recent technological advances and the urgent need to understand the effects of COVID-19, the proteomic analysis of blood-derived serum and plasma has become even more important for studying human biology and pathophysiology. Here we provide views and perspectives about technological developments and possible clinical applications that use mass-spectrometry(MS)- or affinity-based methods.

View Article and Find Full Text PDF

Coronavirus disease 2019 is threatening thousands of millions of people around the world. In the absence of specific and highly effective medicines, the treatment of infected persons is still very challenging. As therapeutics, neutralizing antibodies (NAbs) have great potential.

View Article and Find Full Text PDF

One of the best ways to control COVID-19 is vaccination. Among the various SARS-CoV-2 vaccines, inactivated virus vaccines have been widely applied in China and many other countries. To understand the underlying protective mechanism of these vaccines, it is necessary to systematically analyze the humoral responses that are triggered.

View Article and Find Full Text PDF