The primary weight-bearing structure of the proximal femur, trabecular bone, has a complex three-dimensional architecture that was previously difficult to comprehensively display. This study examined the spatial architecture of trabecular struts in the coronal, sagittal, and horizontal sections of the proximal femur using 21 cases prepared with P45 sectional plasticization. The primary compressive strut (PCS) exhibited a "mushroom-like" shape with upper and lower parts.
View Article and Find Full Text PDFBackground: Avascular necrosis of femoral head and malunion are frequent post-operative complications of femoral neck fractures. To optimize surgical techniques, this study aims to provide a microstructural understanding of intraosseous microvasculature and the trabecular bone of the femoral head and neck.
Study Design: This anatomical study analyzed twenty-eight femora from fourteen cadaveric beagles.
Clinical studies have shown that there may be a certain relationship between pathological changes of the myodural bridge complex (MDBC) and chronic headaches of unknown cause. But there is still a lack of experimental evidence to explain the possible mechanism. This study aims to further confirm this relationship between MDBC and chronic headaches and explore its potential occurrence mechanism in rats.
View Article and Find Full Text PDFCerebrospinal fluid (CSF) circulation is considered the third circulation of the human body. Recently, some scholars have proposed the myodural bridge (MDB) as a novel power source for CSF flow. Moreover, the suboccipital muscles can exert a driving force on the CSF via the MDB.
View Article and Find Full Text PDFThe Myodural Bridge (MDB) is a physiological structure that is highly conserved in mammals and many of other tetrapods. It connects the suboccipital muscles to the cervical spinal dura mater (SDM) and transmits the tensile forces generated by the suboccipital muscles to the SDM. Consequently, the MDB has broader physiological potentials than just fixing the SDM.
View Article and Find Full Text PDFMyodural bridge (MDB) is a dense connective tissue between suboccipital muscle and dura mater. However, there are few reports on the development and maturation of the human MDB. This study aims to explore the developmental relationship between suboccipital muscle and MDB.
View Article and Find Full Text PDFThe cisterna magna has been defined as the space between the inferior margin of the cerebellar vermis to the level of the foramen magnum, while an enlarged dorsal subarachnoid space at the occipito-cervical junction extending from the foramen magnum to the upper border of the axis (C2) is still ignored. Recently, the myodural bridge complex is proved to drive the cerebral spinal fluid flowing via this region, we therefore introduce the "occipito-atlantal cistern (OAC)" to better describe the subarachnoid space and provide a detailed rationale. The present study utilized several methods, including MRI, gross anatomical dissection, P45 sheet plastination, and three-dimensional visualization.
View Article and Find Full Text PDFThe suboccipital cavernous sinus (SCS) and the myodural bridge complex (MDBC) are both located in the suboccipital region. The SCS is regarded as a route for venous intracranial outflow and is often encountered during surgery. The MDBC consists of the suboccipital muscles, nuchal ligament, and myodural bridge and could be a power source for cerebrospinal fluid circulation.
View Article and Find Full Text PDFDuring mammalian evolution, the Myodural Bridges (MDB) have been shown to be highly conserved anatomical structures. However, the putative physiological function of these structures remains unclear. The MDB functionally connects the suboccipital musculature to the cervical spinal dura mater, while passing through the posterior atlanto-occipital and atlanto-axial interspaces.
View Article and Find Full Text PDFThe myodural bridge complex (MDBC) is described as a functional anatomic structure that involves the dense connective tissue fibers, muscles, and ligaments in the suboccipital region. It has recently been proposed that the MDBC can influence cerebrospinal fluid (CSF) circulation. In the present study, bleomycin (BLM), a type of antibiotic that is poisonous to cells, was injected into the posterior atlanto-occipital interspace (PAOiS) of rats to induce fibrous hyperplasia of structures in PAOiS.
View Article and Find Full Text PDFPurpose: Few reports have been published regarding the microanatomy of the dura mater located at the craniovertebral junction (CVJ). In clinic, the precise microanatomy of the CVJ dura mater would be taken into account, for reducing surgical complications and ineffective surgical outcomes. The main objective of the present investigation was to further elucidate the fiber composition and sources of the cervical spinal dura mater.
View Article and Find Full Text PDFThe myodural bridge (MDB) complex are fibrous bridges that functionally connect the spinal dura mater to the suboccipital musculature. Previously, we described the maturational sequence of the MDB within the posterior atlanto-occipital interspace of the rat. The present paper describes the morphology and developmental maturation of the MDB within the posterior atlanto-axial interspace of the rat.
View Article and Find Full Text PDFIn 2016, two adult male sperm whales beached off of Yangkou Port in Nantong City, Jiangsu Province, China. The local government planned to preserve them as specimens, one was entrusted to Dalian Hoffen Biological Co., Ltd.
View Article and Find Full Text PDFPurpose: To reveal differences in the pattern of trabecular architecture in the epiphysis and metaphysis of the proximal tibia.
Methods: The trabecular architecture of the proximal tibia was observed in 27 P45 plastinated knee specimens.
Results: In the medial and lateral condyles, under the articular cartilage surrounded by the medial or lateral meniscus, the cancellous bone is formed by thick and dense trabecular bands, which run longitudinally in the epiphysis and then pass through the epiphyseal line to terminate on the slanted cortex of the metaphysis.
A dense bridge-like tissue named the myodural bridge (MDB) connecting the suboccipital muscles to the spinal dura mater was originally discovered in humans. However, recent animal studies have revealed that the MDB appears to be an evolutionarily conserved anatomic structure which may have significant physiological functions. Our previous investigations have confirmed the existence of the MDB in finless porpoises.
View Article and Find Full Text PDFThe myodural bridge (MDB) is a dense connective tissue bridge connecting the suboccipital muscles to the spinal dura mater, and it has been proven to be a normal common existing structure in humans and mammals. Some scholars believe that the suboccipital muscles can serve as a dynamic cerebrospinal fluid (CSF) pump via the MDB, and they found head rotations promote the CSF flow in human body, which provided evidence for this hypothesis. Head movement is a complex motion, but the effects of other forms of head movement on CSF circulation are less known.
View Article and Find Full Text PDFBackground: The fibula is only indirectly involved in the composition of the human knee joint and has therefore been neglected in the research on knee osteoarthritis. Nonuniform settlement of the proximal tibia plateau is clinically defined as when the height of the medial tibial plateau is lower than that of the lateral side in medial compartment knee osteoarthritis (KOA). The non-uniform settlement of the proximal tibia plateau may be caused by fibular support on the lateral side.
View Article and Find Full Text PDFIndian J Ophthalmol
May 2021
Purpose: Ocular suspensory ligament is an important part of the lower eyelid retractors. However, there is a scarcity of studies examining detailed en-block histologies of ocular suspensory ligaments.
Methods: In this study, we included the cadavers of Chinese adults as subjects.
The myodural bridge (MDB) connects the suboccipital musculature to the spinal dura mater (SDM) as it passed through the posterior atlanto-occipital and the atlanto-axial interspaces. Although the actual function of the MDB is not understood at this time, it has recently been proposed that head movement may assist in powering the movement of cerebrospinal fluid (CSF) via muscular tension transmitted to the SDM via the MDB. But there is little information about it.
View Article and Find Full Text PDFRecent studies have evidenced that the anatomical structure now known as the myodural bridge (MDB) connects the suboccipital musculature to the cervical spinal dura mater (SDM). In humans, the MDB passes through both the posterior atlanto-occipital and the posterior atlanto-axial interspaces. The existence of the MDB in various mammals, including flying birds (Rock pigeons and Gallus domesticus) has been previously validated.
View Article and Find Full Text PDFThe myodural bridge (MDB) is a dense connective tissue structure that connects the subocciptal musculature to the spinal dura mater. The purpose of this study was to clarify morphological evolution characteristics and compositional changes in the fibrous structures of MDB during its growth and development in the atlanto-occipital interspace. For this, histological sections from Sprague-Dawley (SD) rats (age, E17 to adulthood) were stained with Masson's Trichrome and Picrosirius Red.
View Article and Find Full Text PDFJ Musculoskelet Neuronal Interact
September 2020
The aim of this study is to review and discuss the literature on the utilization of magnetic resonance imaging (MRI) in investigating the structure and feasible function of the myodural bridge complex (MDBC) with relevant muscles, which will be useful to understand the function of the MDB. The myodural bridge (MDB) is a soft tissue connective bridge that provides a fascial continuity between the musculature/ligament and cervical spinal dura mater (SDM) in the suboccipital areas. All of these involved structures are referred to as the MDBC.
View Article and Find Full Text PDFStudy Design: A scanning electron microscopic study performed on three cadaveric specimens focused on the human suboccipital region, specifically, myodural bridge (MDB).
Objective: This study showed the connection form of the MDB among the suboccipital muscles, the posterior atlanto-occipital membrane (PAOM) and the spinal dura mater (SDM), and provided an ultrastructural morphological basis for the functional studies of the MDB.
Summary Of Background Data: Since the myodural bridge was first discovered by Hack, researches on its morphology and functions had been progressing continuously.
Background: To evaluate the maximal sectional area (SA) of the rectus capitis posterior minor (RCPmi) muscle and its potential correlation with to be named ligament (TBNL) in the suboccipital area using 3D MR imaging.
Methods: A total of 365 subjects underwent sagittal 3D TWI MR imaging of the RCPmi and TBNL. Among them, 45 subjects were excluded due to a particular clinical history or poor image quality.