Publications by authors named "Sheng-Yi Wu"

Significance: Genetically encoded calcium ion () indicators (GECIs) are powerful tools for monitoring intracellular concentration changes in living cells and model organisms. In particular, GECIs have found particular utility for monitoring the transient increase of concentration that is associated with the neuronal action potential. However, the palette of highly optimized GECIs for imaging of neuronal activity remains relatively limited.

View Article and Find Full Text PDF

Significance: Genetically encoded calcium ion (Ca) indicators (GECIs) are powerful tools for monitoring intracellular Ca concentration changes in living cells and model organisms. In particular, GECIs have found particular utility for monitoring the transient increase of Ca concentration that is associated with the neuronal action potential. However, the palette of highly optimized GECIs for imaging of neuronal activity remains relatively limited.

View Article and Find Full Text PDF

Genetically encoded biosensors based on Förster resonance energy transfer (FRET) are indispensable tools for monitoring biochemical changes in cells. Green and red fluorescent protein-based FRET pairs offer advantages over the classically employed cyan and yellow fluorescent protein pairs, such as better spectral separation, lower phototoxicity, and less autofluorescence. Here, we describe the development of an mScarlet-derived green fluorescent protein (designated as mWatermelon) and its use as a FRET donor to the red fluorescent protein mScarlet-I as a FRET acceptor.

View Article and Find Full Text PDF

Stutzerimonas kunmingensis 7850S is a piezotolerant bacterium isolated from the sediment of the Mariana trench. Here, we described the complete genome of strain 7850S, which contains a single circular chromosome of 4,775,870 base pairs with 62.66% G + C content, and harbors 4494 protein-coding genes, 65 transfer RNA genes, and 12 ribosomal RNA genes.

View Article and Find Full Text PDF
Article Synopsis
  • Potassium ions (K+) are vital electrolytes in biological systems and understanding their role can enhance our knowledge of various processes.
  • Researchers reported the crystal structure of a K+ biosensor, GINKO1, and developed an enhanced version called GINKO2 through structure-guided optimization.
  • GINKO2 has improved sensitivity and specificity, enabling effective in vivo detection and imaging of K+ dynamics in different organisms like bacteria, plants, and mice.
View Article and Find Full Text PDF

The burgeoning of new technologies is increasingly affecting people's lives. One new technology that is heatedly discussed is artificial intelligence (AI) in education. To allow students to understand the impact of emerging technologies on people's future lives from a young age, some popular science activities are being progressively introduced into elementary school curricula.

View Article and Find Full Text PDF

Monatomic ions play critical biological roles including maintaining the cellular osmotic pressure, transmitting signals, and catalyzing redox reactions as cofactors in enzymes. The ability to visualize monatomic ion concentration, and dynamic changes in the concentration, is essential to understanding their many biological functions. A growing number of genetically encodable and synthetic indicators enable the visualization and detection of monatomic ions in biological systems.

View Article and Find Full Text PDF

Comfortable leisure and entertainment is expected through multimedia. Web multimedia systems provide diversified multimedia interactions, for example, sharing knowledge, experience and information, and establishing common watching habits. People use information technology (IT) systems to watch multimedia videos and to perform interactive functions.

View Article and Find Full Text PDF

Potassium ion (K) homeostasis and dynamics play critical roles in biological activities. Here we describe three genetically encoded K indicators. KIRIN1 (potassium (K) ion ratiometric indicator) and KIRIN1-GR are Förster resonance energy transfer (FRET)-based indicators with a bacterial K binding protein (Kbp) inserting between the fluorescent protein FRET pairs mCerulean3/cp173Venus and Clover/mRuby2, respectively.

View Article and Find Full Text PDF

-class red fluorescent proteins (RFPs) are frequently used as biological markers, with far-red (λ ∼ 600-700 nm) emitting variants sought for whole-animal imaging because biological tissues are more permeable to light in this range. A barrier to the use of naturally occurring RFP variants as molecular markers is that all are tetrameric, which is not ideal for cell biological applications. Efforts to engineer monomeric RFPs have typically produced dimmer and blue-shifted variants because the chromophore is sensitive to small structural perturbations.

View Article and Find Full Text PDF

We test the hypothesis that pyranopterin (PPT) coordination plays a critical role in defining molybdenum active site redox chemistry and reactivity in the mononuclear molybdoenzymes. The molybdenum atom of Escherichia coli nitrate reductase A (NarGHI) is coordinated by two PPT-dithiolene chelates that are defined as proximal and distal based on their proximity to a [4Fe-4S] cluster known as FS0. We examined variants of two sets of residues involved in PPT coordination: (i) those interacting directly or indirectly with the pyran oxygen of the bicyclic distal PPT (NarG-Ser(719), NarG-His(1163), and NarG-His(1184)); and (ii) those involved in bridging the two PPTs and stabilizing the oxidation state of the proximal PPT (NarG-His(1092) and NarG-His(1098)).

View Article and Find Full Text PDF