Publications by authors named "Sheng-Xiang Lin"

Sex steroid hormones such as estrogen estradiol (E2) and androgen dihydrotestosterone (DHT) are involved in the development of hormone-dependent cancers. Blockade of 17β-hydroxysteroid dehydrogenase type 7 (17β-HSD7), a member of the short chain dehydrogenase/reductase superfamily, is thought to decrease E2 levels while increasing those of DHT. Therefore, its unique double action makes this enzyme as an interesting drug target for treatment of breast cancer.

View Article and Find Full Text PDF

SARS-CoV-2 exploits the homotrimer transmembrane Spike glycoproteins (S protein) during host cell invasion. The Omicron XBB subvariant, delta, and prototype SARS-CoV-2 receptor-binding domain show similar binding strength to hACE2 (human Angiotensin-Converting Enzyme 2). Here we utilized multiligand virtual screening to identify small molecule inhibitors for their efficacy against SARS-CoV-2 virus using QPLD, pseudovirus ACE2 Inhibition -Time Resolved Forster/Fluorescence energy transfer (TR-FRET) Assay Screening, and Molecular Dynamics simulations (MDS).

View Article and Find Full Text PDF

The current outbreak of coronavirus disease 2019 (COVID-19) has prompted the necessity of efficient treatment strategies. The COVID-19 pandemic was caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Main protease (Mpro), also called 3-chymotrypsin-like protease (3CL protease), plays an essential role in cleaving virus polyproteins for the functional replication complex.

View Article and Find Full Text PDF
Article Synopsis
  • Human type 1 17β-hydroxysteroid dehydrogenase (17β-HSD1) catalyzes the conversion of estrone to estradiol, a crucial step in estrogen bioactivation linked to various diseases.
  • The enzyme's activity can vary based on the cofactors used (primarily NADPH) and its binding interactions with substrates like estrone, which can lead to substrate-induced inhibition.
  • By analyzing the enzyme's structures and performing molecular dynamics simulations, the study highlights how the binding modes of substrates and different cofactors affect the enzyme's function and allosteric interactions between its subunits.
View Article and Find Full Text PDF

Paclitaxel (taxol), a chemotherapeutic agent, remains the standard of care for the lethal triple-negative breast cancer (TNBC). However, over 50% of TNBC patients become resistant to chemotherapy and, to date, no solution is available. CR6-interacting factor 1 (CRIF1) is reported to act as a negative regulator of the cell cycle by interacting with cyclin-dependent kinase 2 (CDK2).

View Article and Find Full Text PDF

Epithelial ovarian cancer, widely suggested as endocrine-related cancer, yields a low survival rate among patients. Despite intensive research for nearly a century, there have been no fundamental advances in treatment. The reductive 17β-HSD7 is a special enzyme possessing a remarkable dual activity in both the biosynthesis of the most potent estrogen estradiol and the inactivation of the most active androgen dihydrotestosterone.

View Article and Find Full Text PDF

Human 17β-hydroxysteroid dehydrogenase type 7 (17β-HSD7), a special multifunctional enzyme, activates the estrogen estrone while inactivating the potent androgen dihydrotestosterone. Thus, this enzyme has become an ideal target for hormone-dependent breast cancer treatment, as its inhibition leads to estradiol reduction and dihydrotestosterone restoration. However, a particular concern has arisen related to an additional role in cholesterol biosynthesis, as inhibition of the enzyme may lead to undesirable side effects.

View Article and Find Full Text PDF

The global spread of COVID-19 constitutes the most dangerous pandemic to emerge during the last one hundred years. About seventy-nine million infections and more than 1.7 million death have been reported to date, along with destruction of the global economy.

View Article and Find Full Text PDF

Optical memory based on the electromagnetically induced transparency (EIT) in a double-[Formula: see text] atomic system provides a convenient way to convert the frequency, bandwidth or polarization of an optical pulse by storing it in one [Formula: see text] channel and retrieving it from another. This memory-based optical converter can be used to bridge the quantum nodes which have different physical properties in a quantum network. However, in real atoms, each energy level usually contains degenerate Zeeman states, which may lead to additional energy loss, as has been discussed in our recent theoretical paper (Tsai et al.

View Article and Find Full Text PDF

The pandemic outbreak of a new coronavirus (CoV), SARS-CoV-2, has captured the world's attention, demonstrating that CoVs represent a continuous global threat. As this is a highly contagious virus, it is imperative to understand RNA-dependent-RNA-polymerase (RdRp), the key component in virus replication. Although the SARS-CoV-2 genome shares 80% sequence identity with severe acute respiratory syndrome SARS-CoV, their RdRps and nucleotidyl-transferases (NiRAN) share 98.

View Article and Find Full Text PDF

Androgen receptor (AR) signaling is essential for prostate cancer (PC) progression and treatment. Experiments have demonstrated that the intratumoral androgen levels are not affected by circulating androgen levels, but rather modulated by local steroid-converting enzyme activities. The expression modulation status of human steroid-converting enzymes and nuclear receptors are of great promise to identify novel therapeutic targets.

View Article and Find Full Text PDF
Article Synopsis
  • Breast cancer (BC) and prostate cancer (PC) are prevalent among women and men in Western countries, with death risk rates at 14% and 9%, respectively.
  • Hormonal imbalances, specifically abnormal levels of estrogen and androgens, play a crucial role in the development of both cancers, with estrogen promoting BC and influencing androgen production in PC.
  • The interaction of androgens with their receptors can have complex effects on BC types and contribute to both primary and advanced forms of PC, highlighting the need for a deeper understanding of these mechanisms to enhance treatment options.
View Article and Find Full Text PDF

In spite of the significant progress of estrogen-dependent breast cancer (BC) treatment, aromatase inhibitor resistance is a major problem limiting the clinical benefit of this frontier endocrine-therapy. The aim of this study was to determine the differential expression of steroid-converting enzymes between tumor and adjacent normal tissues, as well as their correlation in modulating intratumoral steroid-hormone levels in post-menopausal estrogen-dependent BC. RNA sequencing dataset (n = 1097) of The-Cancer-Genome-Atlas (Breast Invasive Carcinoma) retrieved through the data portal of Genomic Data Commons was used for differential expressions and expression correlation analyses by Mann-Whitney U and Spearman's rank test, respectively.

View Article and Find Full Text PDF

Breast cancer is a major cause of cancer-related death for women in western countries. 17β-Hydroxysteroid dehydrogenases (17β-HSDs) play important roles in the last step of sex-hormone activation and the first step of sex-hormone inactivation. 17β-HSD2 is responsible for oxidizing the sex hormones.

View Article and Find Full Text PDF

Reductive 17β-hydroxysteroid dehydrogenases (17β-HSDs) and 11β-hydroxysteroid dehydrogenase 2 (11β-HSD2) play crucial roles in respectively regulating steroids and glucocorticoids for the progression of hormone-dependent breast cancer. Most studies focused on the function and individual regulation of these enzymes. However, mutual regulation of these enzymes and the induced modulation on the estrogen and androgen receptors for breast cancer promotion are not yet clear.

View Article and Find Full Text PDF

Purpose: Hormone-dependent breast cancer is the most common form of breast cancer, and inhibiting 17β-HSD1 can play an attractive role in decreasing estrogen and cancer cell proliferation. However, the majority of existing inhibitors have been developed from estrogens and inevitably possess residual estrogenicity. siRNA knockdown provides a highly specific way to block a targeted enzyme, being especially useful to avoid estrogenicity.

View Article and Find Full Text PDF

Human 17β-hydroxysteroid dehydrogenase type 1 (17β-HSD1) catalyses the last step in estrogen activation and is thus involved in estrogen-dependent diseases (EDDs). Unlike other 17β-HSD members, 17β-HSD1 undergoes a significant substrate-induced inhibition that we have previously reported. Here we solved the binary and ternary crystal structures of 17β-HSD1 in complex with estrone (E1) and cofactor analog NADP , demonstrating critical enzyme-substrate-cofactor interactions.

View Article and Find Full Text PDF

Cyclin-dependent kinases (CDKs) are historic therapeutic targets implicated in tumorigenic events due to their critical involvement in the cell cycle phase. However, selectivity has proven to be a bottleneck, causing repeated failures. Previously, we reported CR6-interacting factor 1 (CRIF1), acting as a cell cycle negative regulator through interaction with CDK2.

View Article and Find Full Text PDF
Article Synopsis
  • Cold-active lipases are increasingly important in industries like food processing and detergent production.
  • A new cold-active lipase gene was successfully cloned and expressed, resulting in a purified enzyme (LipY8p) with a significant purification factor of 25.7 and high activity against olive oil.
  • The enzyme shows optimal activity at pH 7.5 and 17°C, is inhibited by certain metals, and its properties make it suitable for various biotechnological applications.
View Article and Find Full Text PDF

Human 17β-hydroxysteroid dehydrogenase (17β-HSD) type 1 and 7 catalyze the final step of estrogen activation and the first step in androgen inactivation. It has been shown in breast cancer cells that DHT has a suppression effect on cell proliferation, counteracting the estrogen growth effect. However, the exact kinetic function of 17β-HSD7 in steroidogenesis was not determined.

View Article and Find Full Text PDF

17β-Hydroxysteroid dehydrogenase type 1 (17β-HSD1) plays a pivotal role in the progression of estrogen-related diseases because of its involvement in the biosynthesis of estradiol (E2), constituting a valuable therapeutic target for endocrine treatment. In the present study, we successfully cocrystallized the enzyme with the reversible inhibitor 2-methoxy-16β-( m-carbamoylbenzyl)-E2 (2-MeO-CC-156) as well as the enzyme with the irreversible inhibitor 3-(2-bromoethyl)-16β-( m-carbamoylbenzyl)-17β-hydroxy-1,3,5(10)-estratriene (PBRM). The structures of ternary complexes of 17β-HSD1-2-MeO-CC-156-NADP and 17β-HSD1-PBRM-NADP comparatively show the formation of a covalent bond between His and the bromoethyl side chain of the inhibitor in the PBRM structure.

View Article and Find Full Text PDF

Steroid sulfatase is detectable in most hormone-dependent breast cancers. STX64, an STS inhibitor, induced tumor reduction in animal assay. Despite success in phase І clinical trial, the results of phase II trial were not that significant.

View Article and Find Full Text PDF

Quantum memory is an important component in the long-distance quantum communication based on the quantum repeater protocol. To outperform the direct transmission of photons with quantum repeaters, it is crucial to develop quantum memories with high fidelity, high efficiency and a long storage time. Here, we achieve a storage efficiency of 92.

View Article and Find Full Text PDF