ScientificWorldJournal
June 2014
Precise photovoltaic (PV) behavior models are normally described by nonlinear analytical equations. To solve such equations, it is necessary to use iterative procedures. Aiming to make the computation easier, this paper proposes an approximate single-diode PV model that enables high-speed predictions for the electrical characteristics of commercial PV modules.
View Article and Find Full Text PDFIEEE Trans Neural Netw
October 2012
In order to find an appropriate architecture for a large-scale real-world application automatically and efficiently, a natural method is to divide the original problem into a set of subproblems. In this paper, we propose a simple neural-network task decomposition method based on output parallelism. By using this method, a problem can be divided flexibly into several subproblems as chosen, each of which is composed of the whole input vector and a fraction of the output vector.
View Article and Find Full Text PDFThis letter proposes to use multiorder neurons for clustering irregularly shaped data arrangements. Multiorder neurons are an evolutionary extension of the use of higher-order neurons in clustering. Higher-order neurons parametrically model complex neuron shapes by replacing the classic synaptic weight by higher-order tensors.
View Article and Find Full Text PDFIEEE Trans Syst Man Cybern B Cybern
April 2005
Incremental learning has been widely addressed in the machine learning literature to cope with learning tasks where the learning environment is ever changing or training samples become available over time. However, most research work explores incremental learning with statistical algorithms or neural networks, rather than evolutionary algorithms. The work in this paper employs genetic algorithms (GAs) as basic learning algorithms for incremental learning within one or more classifier agents in a multiagent environment.
View Article and Find Full Text PDFThis paper presents a new genetic algorithm approach to multiobjective optimization problems--incremental multiple objective genetic algorithms (IMOGA). Different from conventional MOGA methods, it takes each objective into consideration incrementally. The whole evolution is divided into as many phases as the number of objectives, and one more objective is considered in each phase.
View Article and Find Full Text PDFIEEE Trans Syst Man Cybern B Cybern
February 2004
This paper proposes a class decomposition approach to improve the performance of GA-based classifier agents. This approach partitions a classification problem into several class modules in the output domain, and each module is responsible for solving a fraction of the original problem. These modules are trained in parallel and independently, and results obtained from them are integrated to form the final solution by resolving conflicts.
View Article and Find Full Text PDF