Publications by authors named "Sheng-Qing Zhu"

We theoretically study the electromagnetic forces (optical gradient force, optical torque and vacuum friction) acting on a spherical anisotropic nanoparticle, which can be characterized by multilayer hyperbolic metamaterials (mHMMs). We find three important results about these forces: (i) Firstly, we theoretically demonstrate that the optical gradient force produced on a mHMMs nanoparticle can be flexibly tuned, from pushing the particle to pulling it, just via changing incident angle of illuminating plane light wave. (ii) Secondly, we find the optical torque acting on the mHMMs nanoparticle (its filling factor is around 0.

View Article and Find Full Text PDF

Light trapping, caused by the introduction of metallic nanoparticles, has been demonstrated to enhance photo-absorption in GaAs solar cells. In this study, we successfully synthesized gold nanostar thin film with hot spots and obtained a notable improvement of power conversion efficiency (PCE) in single-junction and three-junction high-performance GaAs solar cells by incorporating the poly (3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) layer, which enables a much stronger light trapping capability and scattering enhancement than conventional metal nanostructures. Increases of 5.

View Article and Find Full Text PDF

The difluoromethyl group (CFH) is of great interest in the area of medicinal chemistry. However, the investigation of molecular scaffolds containing this group has been hampered by the limitation of synthetic methods for the introduction of CFH into heteroarenes. Herein we disclose a new strategy for the direct introduction of a difluoromethyl group into heteroarenes via the copper-mediated C-H oxidative difluoromethylation of heteroarenes with TMSCFH.

View Article and Find Full Text PDF

A silver-mediated oxidative difluoromethylation of phenanthridines and 1,10-phenanthrolines with TMSCFH is disclosed. This C-H difluoromethylation of N-containing polycyclic aromatics constitutes an efficient method for the regioselective synthesis of difluoromethylated N-heterocycles.

View Article and Find Full Text PDF

The nanocomposite polyvinyl pyrrolidone (PVP) films containing Ag nanoparticles and Rhodamine 6G are prepared on the two-dimensional distinctive continuous ultrathin gold nanofilms. We investigate the optical properties and the fluorescence properties of silver nanoparticles-PVP polymer composite films influenced by Ag nanoparticles and Au nanoparticles. Absorption spectral analysis suggests that the prominently light absorption in Ag nanowire/PVP and Ag nanowire/PVP/Au film arises from the localized surface plasmon resonance of Ag nanowire and Au nanofilm.

View Article and Find Full Text PDF

Surface-enhanced Raman scattering is an effective analytical method that has been intensively applied in the field of identification of organic molecules from Raman spectra at very low concentrations. The Raman signal enhancement that makes this method attractive is usually ascribed to the noble metal nanoparticle (NMNP) arrays which can extremely amplify the electromagnetic field near NMNP surface when localized surface plasmon resonance (LSPR) mode is excited. In this work, we report a simple, facile, and room-temperature method to fabricate large-scale, uniform gold nanoparticle (GNP) arrays on ITO/glass as SERS substrates using a promoted self-assembly deposition technique.

View Article and Find Full Text PDF

Background: Noble metallic nanoparticles have prominent optical local-field enhancement and light trapping properties in the visible light region resulting from surface plasmon resonances.

Results: We investigate the optical spectral properties and the surface-enhanced Raman spectroscopy of two-dimensional distinctive continuous ultrathin gold nanofilms. Experimental results show that the one- or two-layer nanofilm obviously increases absorbance in PEDOT:PSS and P3HT:PCBM layers and the gold nanofilm acquires high Raman-enhancing capability.

View Article and Find Full Text PDF

We report an electrophoretic deposition method for the fabrication of gold nanoparticle (GNP) thin films as sensitive surface-enhanced Raman scattering (SERS) substrates. In this method, GNP sol, synthesized by a seed-mediated growth approach, and indium tin oxide (ITO) glass substrates were utilized as an electrophoretic solution and electrodes, respectively. From the scanning electron microscopy analysis, we found that the density of GNPs deposited on ITO glass substrates increases with prolonged electrophoresis time.

View Article and Find Full Text PDF

Wide wavelength ranges of light localization and scattering characteristics can be attributed to shape-dependent longitude surface plasmon resonance in complicated nanostructures. We have studied this phenomenon by spectroscopic measurement and a three-dimensional numerical simulation, for the first time, on the high-density branched silver nanowires and nanomeshworks at room temperature. These nanostructures were fabricated with simple light-induced colloidal method.

View Article and Find Full Text PDF

We propose a polymer growth model, in which propagating radicals can grow through propagation processes or annihilate through termination (disproportionation or combination) processes. Considering a simple case in which the propagation and termination rates of each polymer chain are both independent of its length, we then investigate analytically the kinetics of the model by means of the rate-equation approach. The propagating radicals will be exhausted eventually and only the inert polymers (the termination products of propagating radicals) can survive in the end.

View Article and Find Full Text PDF