Publications by authors named "Sheng-Min Huang"

Purpose: This prospective study aimed to investigate estrogen-induced carcinogenesis by assessing the background levels of abasic sites (apurinic/apyrimidinic sites, AP sites) in Taiwanese breast cancer patients following 5 years of postoperative treatment without recurrence (5-year survivors) (n = 70). The study also sought to compare the extent of these DNA lesions with those found in healthy controls and in breast cancer patients prior to treatment.

Methods: Abasic sites were measured using an aldehyde reactive probe and quantified as the total number of abasic sites per total nucleotides.

View Article and Find Full Text PDF

Proper topographically organized neural connections between the thalamus and the cerebral cortex are mandatory for thalamus function. Thalamocortical (TC) fiber growth begins during the embryonic period and completes by the third trimester of gestation, so that human neonates at birth have a thalamus with a near-facsimile of adult functional parcellation. Whether congenital neocortical anomaly (e.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates essential tremor (ET) by examining functional connectivity and brain network characteristics, using resting-state fMRI to identify differences between ET patients and normal controls.
  • Findings show reduced connectivity between key brain networks and altered functional activity in various regions associated with ET.
  • Analysis reveals that tremor features correlate with different connectivity metrics, suggesting that resting-state fMRI is a valuable tool for understanding brain changes in ET.
View Article and Find Full Text PDF

Obesity is a significant health concern that often leads to metabolic dysfunction and chronic diseases. This study introduces a novel approach to combat obesity using orally ingested self-powered electrostimulators. These electrostimulators consist of piezoelectric BaTiO (BTO) particles conjugated with capsaicin (Cap) and aim to activate the vagus nerve.

View Article and Find Full Text PDF

Identifying subcortical ischemic vascular disease (SIVD) in older adults is important but challenging. Growing evidence suggests that diffusional kurtosis imaging (DKI) can detect SIVD-relevant microstructural pathology, and a systematic assessment of the discriminant power of DKI metrics in various brain tissue microstructures is urgently needed. Therefore, the current study aimed to explore the value of DKI and diffusion tensor imaging (DTI) metrics in detecting early-stage SIVD by combining multiple diffusion metrics, analysis strategies, and clinical-radiological constraints.

View Article and Find Full Text PDF

Collapsin response mediator protein 1 (CRMP1) is involved in semaphorin 3A signaling pathway, promoting neurite extension and growth cone collapse. It is highly expressed in the nervous system, especially the hippocampus. The crmp1 knockout (KO) mice display impaired spatial learning and memory, and this phenomenon seemingly tends to deteriorate with age.

View Article and Find Full Text PDF

Diffusion tensor imaging (DTI) in animal models are essential for translational neuroscience studies. A critical step in animal studies is the use of anesthetics. Understanding the influence of specific anesthesia regimes on DTI-derived parameters, such as fractional anisotropy (FA) and mean diffusivity (MD), is imperative when comparing results between animal studies using different anesthetics.

View Article and Find Full Text PDF

Objectives: Women undergoing hysterectomy with oophorectomy have an increased risk of Alzheimer's disease and Parkinson's disease. However, postoperative neuroimaging data on pathogenic processes in the brain are limited. The aim of this study was to investigate the potential effect of ovariohysterectomy on brain integrity in rat model using diffusion tensor imaging (DTI) technique for the first time.

View Article and Find Full Text PDF

Objective: Diffusion tensor imaging (DTI) is a useful approach for studying neuronal integrity in animals. However, the test-retest reproducibility of DTI techniques in animals has not been discussed. Therefore, the first part of this work was to systematically elucidate the reliability of DTI-derived parameters in an animal study.

View Article and Find Full Text PDF

Mood disorders are an important public health issue and recent advances in genomic studies have indicated that molecules involved in neurodevelopment are causally related to mood disorders. BLM-s (BCL-2-like molecule, small transcript isoform), a BH3-only proapoptotic BCL-2 family member, mediates apoptosis of postmitotic immature neurons during embryonic cortical development, but its role in the adult brain is unknown. To better understand the physiological role of Blm-s gene in vivo, we generated a Blm-s-knockout (Blm-s) mouse.

View Article and Find Full Text PDF

Background: Altered neural activity based on the fractional amplitude of low-frequency fluctuations (fALFF) has been reported in patients with diabetes. However, whether fALFF can differentiate healthy controls from diabetic animals under anesthesia remains unclear. The study aimed to elucidate the changes in fALFF in a rat model of diabetes under isoflurane anesthesia.

View Article and Find Full Text PDF

Few studies have investigated differences in functional connectivity (FC) between patients with subcortical ischemic vascular disease (SIVD) and Alzheimer's disease (AD), especially in relation to apathy. Therefore, the aim of this study was to compare apathy-related FC changes among patients with SIVD, AD, and cognitively normal subjects. The SIVD group had the highest level of apathy as measured using the Apathy Evaluation Scale-clinician version (AES).

View Article and Find Full Text PDF

We report a systematic study of carbon fibre (CF)-supported NiCo layered double hydroxide nanosheets (LDHNs) with and without heat treatment at 200 and 400 °C (CF-NiCo LDHN and CF-NiCo oxide nanoparticles (NPs), respectively) as catalysts and sensors for glucose oxidation reactions (GORs). Tafel measurements for the GORs showed that the exchange current density of CF-NiCo LDHN was 1.91 × 10 mA·cm at an early rest potential of -0.

View Article and Find Full Text PDF

Background: Prospective memory (PM), the ability to execute a previously formed intention given the proper circumstance, has been proven to be vulnerable to Alzheimer's disease. Previous studies have indicated the involvement of the frontoparietal networks; however, it is proposed that PM may also be associated with other neural substrates that support stimulus-dependent spontaneous cognition.

Objective: The present study aimed to examine the hypothesis that PM deficit in Alzheimer's disease is related to altered functional connectivity (FC) within the default mode network (DMN).

View Article and Find Full Text PDF
Article Synopsis
  • Excess fluid from vasogenic edema complicates the characterization of ischemic brain tissue via conventional MRI techniques, resulting in misleading readings during subacute and chronic stroke phases.
  • The study explores a new MRI method called free water elimination (FWE) that effectively isolates and measures free fluid in brain tissue, which may serve as a novel biomarker for ischemic conditions.
  • Findings indicate that the free water fraction increases post-stroke, with distinct patterns in core and border zones, and the new diffusion and relaxometry MRI metrics show significant differences compared to traditional methods.
View Article and Find Full Text PDF

Differentiating between subcortical ischemic vascular disease (SIVD), Alzheimer's disease (AD), and normal cognition (NC) remains a challenge, and reliable neuroimaging biomarkers are needed. The current study, therefore, investigated the discriminative ability of diffusion kurtosis imaging (DKI) metrics in segregated thalamic regions and compare with diffusion tensor imaging (DTI) metrics. Twenty-three SIVD patients, 30 AD patients, and 24 NC participants underwent brain magnetic resonance imaging.

View Article and Find Full Text PDF

This study aims to integrate an ultra-high-strength gradient coil system on a clinical 3 T magnet and demonstrate its preclinical imaging capabilities. Dedicated phantoms were used to qualitatively and quantitatively assess the performance of the gradient system. Advanced MR imaging sequences, including diffusion tensor imaging (DTI) and quantitative susceptibility mapping (QSM), were implemented and executed on an ex vivo specimen as well as in vivo rats.

View Article and Find Full Text PDF

Focused ultrasound phased array systems have attracted increased attention for brain therapy applications. However, such systems currently lack a direct and real-time method to intraoperatively monitor ultrasound pressure distribution for securing treatment. This study proposes a dual-mode ultrasound phased array system design to support transmit/receive operations for concurrent ultrasound exposure and backscattered focal beam reconstruction through a spherically focused ultrasound array.

View Article and Find Full Text PDF

High-intensity focused ultrasound (HIFU) has demonstrated the capacity to be used for local thermal ablation in clinical surgery; however, relying solely on conventional ultrasound B-mode imaging to monitor HIFU thermal ablation and determine ablation levels remains a challenge. Here, we experimentally demonstrate the ability to use Nakagami imaging to monitor HIFU-induced thermal lesions in porcine livers ex vivo. Ultrasonic Nakagami imaging has been proven to be able to characterize tissues with different scatterer concentrations and distributions.

View Article and Find Full Text PDF

Plant vacuoles serve as the primary intracellular compartments for inorganic phosphate (Pi) storage. Passage of Pi across vacuolar membranes plays a critical role in buffering the cytoplasmic Pi level against fluctuations of external Pi and metabolic activities. Here we demonstrate that the SPX-MFS proteins, designated as PHOSPHATE TRANSPORTER 5 family (PHT5), also named Vacuolar Phosphate Transporter (VPT), function as vacuolar Pi transporters.

View Article and Find Full Text PDF

Genetic divergences among mammalian strains are presented phenotypically in various aspects of physical appearance such as body shape and facial features. Yet how genetic diversity is expressed in brain function still remains unclear. Functional connectivity has been shown to be a valuable approach in characterizing the relationship between brain functions and behaviors.

View Article and Find Full Text PDF

Chemical exchange saturation transfer magnetic resonance imaging (CEST-MRI) is capable of both microenvironment and molecular imaging. The optimization of scanning parameters is important since the CEST effect is sensitive to factors such as saturation power and field homogeneity. The aim of this study was to determine if the CEST effect would be altered by changing the length of readout RF pulses.

View Article and Find Full Text PDF

Ultrasound tissue characterization is crucial for the detection of tissue abnormalities. Since the statistics of the backscattered ultrasound signals strongly depend on density and spatial arrangement of local scatterers, appropriate modeling of the backscattered signals may be capable of providing unique physiological information on local tissue properties. Among various techniques, the Nakagami imaging, realized in a window-based estimation scheme, has a good performance in assessing different scatterer statistics in tissues.

View Article and Find Full Text PDF

This paper presents new albumin-shelled Gd-DTPA microbubbles (MBs) that can concurrently serve as a dual-modality contrast agent for ultrasound (US) imaging and magnetic resonance (MR) imaging to assist blood-brain barrier (BBB) opening and detect intracerebral hemorrhage (ICH) during focused ultrasound brain drug delivery. Perfluorocarbon-filled albumin-(Gd-DTPA) MBs were prepared with a mean diameter of 2320 nm and concentration of 2.903×10(9) MBs ml(-1) using albumin-(Gd-DTPA) and by sonication with perfluorocarbon (C(3)F(8)) gas.

View Article and Find Full Text PDF

Purpose: When applying diagnostic ultrasound to guide focused ultrasound (FUS) thermal therapy, high frame rate ultrasonic temperature monitoring is valuable in better treatment control and dose monitoring. However, one of the potential problems encountered when performing ultrasonic temperature monitoring of a FUS procedure is interference between the FUS and imaging systems. Potential means of overcoming this problem include the switch between the FUS system and the imaging system (limited by a reduced frame rate of thermal imaging) or the development of complex synchronization protocols between the FUS therapeutic system and the ultrasonic imaging apparatus (limited by implementation efforts both for software and hardware designs, and low potential for widespread diffusion).

View Article and Find Full Text PDF