Herein, we report the ultrasensitive DNA detection through designing an elegant nanopore biosensor as the first case to realize the reversal of current rectification direction for sensing. Attributed to the unique asymmetric structure, the glass conical nanopore exhibits the sensitive response to the surface charge, which can be facilely monitored by ion current rectification curves. In our design, an enzymatic cleavage reaction was employed to alter the surface charge of the nanopore for DNA sensing.
View Article and Find Full Text PDFIn this article, we have demonstrated for the first time a triple stimuli-responsive nanofluidic diode that can rectify ionic current under multiple external stimuli including temperature, pH, and sugar. This diode was fabricated by immobilizing poly[2-(dimethylamino)ethyl methacrylate]-co-[4-vinyl phenylboronic acid] (P(DMAEMA-co-VPBA)) onto the wall of a single glass conical nanopore channel via surface-initiator atom transfer radical polymerization (SI-ATRP). The copolymer brushes contain functional groups sensitive to pH, temperature and sugar that can induce charge and configuration change to affect the status of the pore wall.
View Article and Find Full Text PDFChem Commun (Camb)
October 2016
For the first time, a biomimetic ion channel co-modulated simultaneously by conformation and charge using a single stimulus has been demonstrated, and, based on the synergetic effect of this channel, an ultrasensitive nanopore sensor for ATP with a limit of detection down to sub-pM was developed.
View Article and Find Full Text PDFBiosens Bioelectron
September 2015
In this work, we have proposed a label-free nanopore-based biosensing strategy for protein detection by performing the DNA-protein interaction inside a single glass conical nanopore. A lysozyme binding aptamer (LBA) was used to functionalize the walls of glass nanopore via siloxane chemistry and negatively charged recognition sites were thus generated. The covalent modification procedures and their recognition towards lysozyme of the single conical nanopore were characterized via ionic current passing through the nanopore membrane, which was measured by recording the current-voltage (I-V) curves in 1mM KCl electrolyte at pH=7.
View Article and Find Full Text PDF