In this study, we have utilized theoretical calculations to predict the reaction active sites of naproxen when reacting with radicals and to further study the thermodynamics and kinetics of the reactions with ·OH and SO. The evidence, derived from the average local ionization energy and electrostatic potential, points to the naphthalene ring as the preferred site of attack, especially for the C2, C6, C9, and C10 sites. The changes in Gibbs free energy and enthalpy of the reactions initiated by ·OH and SO ranged between -19.
View Article and Find Full Text PDFLimited by the electrostatic interaction, the oxidation reaction of cations at the anode and the reduction reaction of anions at the cathode in the electrocatalytic system nearly cannot be achieved. This study proposes a novel strategy to overcome electrostatic interaction via strong complexation, realizing the electrocatalytic reduction of cyanide (CN ) at the cathode and then converting the generated reduction products into nitrogen (N ) at the anode. Theoretical calculations and experimental results confirm that the polarization of the transition metal oxide cathodes under the electric field causes the strong chemisorption between CN and cathode, inducing the preferential enrichment of CN to the cathode.
View Article and Find Full Text PDFTraditional methods of cyanides' (CN) mineralization cannot overcome the contradiction between the high alkalinity required for the inhibition of hydrogen cyanide evolution and the low alkalinity required for the efficient hydrolysis of cyanate (CNO) intermediates. Thus, in this study, a novel Electro-Fenton system was constructed, in which the free cyanides released from ferricyanide photolysis can be efficiently mineralized by the synergy of •OH and •O. The complex bonds in ferricyanide (100 mL, 0.
View Article and Find Full Text PDFIndirect electrochemical oxidation by hydroxyl radicals is the predominant degradation mechanism in electrolysis with a boron-doped diamond (BDD) anode. However, this electrochemical method exhibits low reactivity in removal of hydrophilic aromatic pollutants owing to mass transfer limitation. In this study, the combination of ultraviolet light and BDD electrolysis could increase the degradation rate of hydrophilic aromatic pollutants by approximately 8-10 times relative to electrolysis alone.
View Article and Find Full Text PDFSinglet oxygen ( O ) is an excellent active species for the selective degradation of organic pollutions. However, it is difficult to achieve high efficiency and selectivity for the generation of O . In this work, we develop a graphitic carbon nitride supported Fe single-atoms catalyst (Fe /CN) containing highly uniform Fe-N active sites with a high Fe loading of 11.
View Article and Find Full Text PDFSingle atom catalysts (SACs) with the maximized metal atom efficiency have sparked great attention. However, it is challenging to obtain SACs with high metal loading, high catalytic activity, and good stability. Herein, we demonstrate a new strategy to develop a highly active and stable Ag single atom in carbon nitride (Ag-N C /CN) catalyst with a unique coordination.
View Article and Find Full Text PDFA facile and effective impregnation combined with photo-deposition approach was adopted to deposit cadmium sulfide (CdS) nanoparticles on CTF-1, a covalent triazine-based frameworks (CTFs). In this system, CTF-1 not only acted as supporter but also served as photocatalyst and electron donor. The performance of the obtained CdS deposited CTF-1 (CdS-CTF-1) nanocomposite was evaluated by H evolution reaction under visible light irradiation.
View Article and Find Full Text PDFJ Environ Sci Health A Tox Hazard Subst Environ Eng
January 2017
Sulfonamide antibiotics are often detected in terrestrial and aquatic environment, but little is known about abiotic degradation of these antibiotics. In the present study, the degradation of the sulfonamide antibiotic sulfadiazine by a synthesized δ-MnO was investigated. The initial reaction rate of sulfadiazine oxidized by manganese dioxide increased as the solution pH decreased by weakening electrostatic attraction between sulfadiazine and MnO and enhancing the reduction potential of MnO.
View Article and Find Full Text PDFFood Addit Contam Part B Surveill
March 2017
Concentrations of six phthalates were determined in 69 plastic bottled non-alcoholic beverages collected from marketplaces in China. Di-n-butyl phthalate (DBP) and di-(2-ethylhexyl)-phthalate (DEHP) were the most detected compounds with frequencies of 100%. Dimethyl phthalate was found less, with a mean frequency of almost 34%.
View Article and Find Full Text PDFHighly porous, three-dimensional (3D) nanostructured composite adsorbents of reduced graphene oxides/Mn3O4 (RGO/Mn3O4) were fabricated by a facile method of a combination of reflux condensation and solvothermal reactions and systemically characterized. The as-prepared RGO/Mn3O4 possesses a mesoporous 3D structure, in which Mn3O4 nanoparticles are uniformly deposited on the surface of the reduced graphene oxide. The adsorption properties of RGO/Mn3O4 to antimonite (Sb(III)) and antimonate (Sb(V)) were investigated using batch experiments of adsorption isotherms and kinetics.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2015
A series of heterostructured CdS/Sr2(Nb17/18Zn1/18)2O7-δ composites with excellent photocatalytic ability for simultaneous hydrogen evolution and As(III) oxidation under simulated sunlight were synthesized and characterized. Among them, 30% CdS/Sr2(Nb17/18Zn1/18)2O7-δ (30CSNZO) has the highest in activity, exhibiting a H2 production rate of 1669.1 μmol·h(-1)·g(-1) that is higher than that of many photocatalysts recently reported in the literature.
View Article and Find Full Text PDFFlower-like Bi2O2CO3 and g-C3N4-Bi2O2CO3 microspheres with a high adsorption ability were synthesized using a facile method, and their dye-induced photosensitized degradation activity under visible light irradiation was evaluated. The as-synthesized samples were characterized by XRD, FT-IR, FESEM, TEM (HRTEM), UV-vis DRS and nitrogen adsorption-desorption techniques. It was found that the activity of Bi2O2CO3 was significantly enhanced due to the generation of g-C3N4-Bi2O2CO3 heterostructures.
View Article and Find Full Text PDFA simple method for facile synthesis of three-dimensional (3D) bismuth oxyhalide (BiOX, X═Cl, Br, I) hierarchical structures at room temperature has been developed. Under the influence of L-lysine surfactant, the bismuth and halogen (Cl, Br, I) sources hydrolyze and self-assemble into flower-like hierarchical architectures within 10 min. The resulted materials were characterized by XRD, FESEM, TEM, UV-vis DRS, and N2 adsorption-desorption techniques.
View Article and Find Full Text PDFFor the first time, porous peanut-like Bi(2)O(3)-BiVO(4) composites with heterojunctions have been synthesized by a one-step mixed solvothermal method with the assistance of a l-lysine template. A mixture of ethylene glycol (EG) and H(2)O (volume ratio of EG-H(2)O = 3:1) is used as the solvent. Unlike the traditional methods, no concentrated HNO(3) and/or NaOH are involved in diluting Bi and V sources in the adopted approach.
View Article and Find Full Text PDFHuan Jing Ke Xue
January 2012
Under intermittent aerated and continuous fed operation where the biofilm system was subjected to alternated anaerobic/aerobic condition, the effect of influent volatile fatty acids (VFAs) concentrations, operation cycle and backwash on the biological phosphorus removal performance of the biofilter was studied. In the experiment, synthetic domestic wastewater was used, and the influent velocity was 5 L x h(-1) with gas versus liquid ratio of 8:1 and hydraulic retention time (HRT) of 1.3 h, resulting in average COD, ammonium and phosphorus load of 4.
View Article and Find Full Text PDFThis study investigates the heavy metal-resistant bacterial endophytes of Cd-hyperaccumulator Solanum nigrum L. grown on a mine tailing by using cultivation-dependent technique. Thirty Cd-tolerant bacterial endophytes were isolated from roots, stems, and leaves of S.
View Article and Find Full Text PDFJ Biomed Nanotechnol
October 2009
High-concentration gold nanoparticles stabilized by poly(vinylpyrrolindone) (PVP) are prepared through modified citrate-reduction method. The modified approach possesses all the advantages of the popular citrate reduction method. With PVP as weak ligands as well as spatial effects for the metal nanoparticles, the control of the size and size distribution of the gold nanoparticles in the size range between 10 and 30 nm was achieved via maintaining balanced nucleation and growth by tuning the feed ratios of the metal precursors and reducing reagents.
View Article and Find Full Text PDFLarge-scale synthesis of semiconductor nanocrystals or quantum dots (QDs) with high concentration and high yield through simultaneously increasing the precursor concentration was introduced. This synthetic route conducted in diesel has produced gram-scale CdSe semiconductor quantum dots (In optimal scale-up synthetic condition, the one-pot yield of QDs is up to 9.6g).
View Article and Find Full Text PDF