Publications by authors named "Sheng-Ke Tian"

The elucidation of a natural strategy for metal hyperaccumulation enables the rational design of technologies for the clean-up of metal-contaminated soils. Organic acid has been suggested to be involved in toxic metallic element tolerance, translocation, and accumulation in plants. The impact of exogenous organic acids on cadmium (Cd) uptake and translocation in the zinc (Zn)/Cd co-hyperaccumulator Sedum alfredii was investigated in the present study.

View Article and Find Full Text PDF

The in vivo localization and speciation of lead (Pb) in tissues of the accumulator Sedum alfredii grown in EDTA-Pb and Pb(NO(3))(2) was studied by synchrotron X-ray investigation. The presence of EDTA-Pb in solution resulted in a significant reduction of Pb accumulation in S. alfredii.

View Article and Find Full Text PDF

* Sedum alfredii is a fast-growing, high-biomass zinc (Zn) hyperaccumulator native to China. Here, the characteristics of in vivo Zn distribution in stems and leaves of the hyperaccumulating (HE) and nonhyperaccumulating ecotypes (NHE) of S. alfredii were investigated by synchrotron radiation X-ray fluorescence (SRXRF) analysis, together with a Zn probe.

View Article and Find Full Text PDF

Sedum alfredii is a well known cadmium (Cd) hyperaccumulator native to China; however, the mechanism behind its hyperaccumulation of Cd is not fully understood. Through several hydroponic experiments, characteristics of Cd uptake and translocation were investigated in the hyperaccumulating ecotype (HE) of S. alfredii in comparison with its non-hyperaccumulating ecotype (NHE).

View Article and Find Full Text PDF

Sedum alfredii (Crasulaceae) is the only known Cd-hyperaccumulating species that are not in the Brassica family; the mechanism of Cd hyperaccumulation in this plant is, however, little understood. Here, a combination of radioactive techniques, metabolic inhibitors, and fluorescence imaging was used to contrast Cd uptake and translocation between a hyperaccumulating ecotype (HE) and a non-hyperaccumulating ecotype (NHE) of S. alfredii.

View Article and Find Full Text PDF

A hydroponic study was conducted to investigate the biomass, root morphology, and zinc (Zn), calcium (Ca) and sulfur (S) contents of two Sedum alfredii ecotypes under effects of different concentration calcium (Ca2+) addition. The results showed that with increasing exogenous Ca2+ concentration, the dry mass of the two S. alfredii ecotypes increased, and the shoot dry mass of hyperaccumulation ecotype increased significantly (P <0.

View Article and Find Full Text PDF

Sedum alfredii Hance has been identified as zinc (Zn) and cadmium (Cd) co-hyperaccumulator. In this paper the relationships of Zn or Cd hyperaccumulation to the generation and the role of H2O2 in Sedum alfredii H. were examined.

View Article and Find Full Text PDF

Elsholtzia argyi and Elsholtzia splendens, which are Chinese endemic Pb/Zn mined and Cu mined ecotype respectively, were investigated in the aspect of their response to Pb toxicity in the presence or absence of EDTA addition. After 8 d's Pb treatment, root length, root surface area and root volume of E. splendens decreased much more than those of E.

View Article and Find Full Text PDF

Copper accumulation and intracellular distribution in Elsholtzia splendens, a native Chinese Cu-tolerant and accumulating plant species, was investigated by transmission electron microscope (TEM) and gradient centrifugation techniques. Copper concentrations in roots, stems and leaves of E. splendens increased with increasing Cu levels in solution.

View Article and Find Full Text PDF

A solution with different Cu supply levels was cultured to investigate gama-aminobutyric acid (GABA) accumulation in Elsholtzia splendens, a native Chinese Cu-tolerant and accumulating plant species. Increasing Cu from 0.25 to 500 micromol/L significantly enhanced levels of GABA and histidine (His), but considerably decreased levels of aspartate (Asp) and glutamate (Glu) in the leaves.

View Article and Find Full Text PDF