The endotoxin lipopolysaccharide (LPS)-induced pulmonary endothelial barrier disruption is a key pathogenesis of acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). However, the molecular mechanisms underlying LPS-impaired permeability of pulmonary microvascular endothelial cells (PMVECs) are not fully understood. Gap junctions, particularly Connexin40 (Cx40), are necessary for the maintenance of normal vascular function.
View Article and Find Full Text PDFObjective: To investigate the protective effects of high-dose ulinastatin on the vital organs in patients undergoing total arch replacement for type A aortic dissection.
Methods: Between September 2014 and March 2016, 66 patients with type A aortic dissection underwent total arch replacement at our center. Thirty-six of the patients received ulinastatin treatment at 300 000 U/8 h from admission to 3 days postoperatively and at 300 000 U/2 h during cardiopulmonary bypass surgery (UTI group), and the other 30 patients did not receive perioperative ulinastatin treatment (control group).
Background: Resveratrol has been shown to attenuate reactive oxygen species formation and protect against ischemia-reperfusion (I/R) injury. However, the effects of resveratrol against subacute intestinal I/R injury are not clearly elucidated. Therefore, this study was designed to investigate the effects and possible protective mechanisms of resveratrol on subacute intestinal I/R injury in mice.
View Article and Find Full Text PDFOsthole, a bioactive simple coumarin derivative extracted from a number of medicinal plants, such as Cnidium monnieri and Angelica pubescens, has been shown to exert a variety of pharmacological activities and is considered to have potential therapeutic applications. In this study, we investigated the protective effects of osthole against myocardial ischemia/reperfusion (I/R) injury in rats. Male Sprague-Dawley rats were randomly assigned to 1 of 5 groups: the sham-oeprated control group (control), the vehicle group (vehicle), and 3 treatment groups, which were treated with osthole at the concentration of 1, 10 or 50 mg/kg (intraperitoneally), respectively, upon the initiation of myocardial ischemia.
View Article and Find Full Text PDFThe Ca(2+) paradox represents a good model to study Ca(2+) overload injury in ischemic heart diseases. We and others have demonstrated that contracture and calpain are involved in the Ca(2+) paradox-induced injury. This study aimed to elucidate their roles in this model.
View Article and Find Full Text PDFClin Exp Pharmacol Physiol
April 2012
The calcium paradox represents an important model in which to study myocardial injuries due to intracellular Ca(2+) overload. In a previous study, calpain was transiently activated in Ca(2+) -paradoxic hearts. The aim of the present study was to determine the role of calpain in myocardial dysfunction in hearts subjected to the Ca(2+) paradox and to elucidate the underlying mechanisms.
View Article and Find Full Text PDFObjectives: We sought to evaluate a moderate-potassium cardioplegic solution using adenosine and lidocaine as the arresting and protecting cardioprotective combination in pediatric cardiac surgery.
Methods: One hundred thirty-four patients with congenital heart disease were randomly allocated to one of 3 groups according to the cardioplegia formula used: the high-potassium (HP) group (K(+), 20 mmol/L), 46 patients; the high-potassium adenosine-lidocaine (HPAL) group (K(+), 20 mmol/L; adenosine, 0.7 mmol/L; and lidocaine, 0.
Background: The effect of adenosine postconditioning on myocardial protection in cardiac surgery remains uncertain. The present study evaluated the safety, feasibility, and beneficial effect of adenosine postconditioning as an adjunct to predominantly used cold-blood cardioplegic myocardial protection method in the setting of heart valve replacement operations.
Methods: Sixty patients with rheumatic heart valve disease undergoing heart valve replacement operations were randomized to an adenosine (1.