Poly(ether ether ketone) (PEEK) has seen increasing use in biomedical fields as a replacement for metal implants. Accordingly, the surface functionalities of PEEK are important for the development of medical devices. We have focused on the application of photoinduced reactions in PEEK to immobilize a functional polymer radical generation on the surface, which can react with hydrocarbon groups.
View Article and Find Full Text PDFBiofouling has long been a problem for biomaterials, so being able to control the fouling on the surface of a biomaterial would be ideal. In this study a copolymer system was designed comprising three moieties: an epoxy containing group, glycidyl methacrylate (GMA); a thermoresponsive segment, N-isopropylacrylamide (NIPAAm); and an antifouling zwitterionic unit, sulfobetaine methacrylate (SBMA). The copolymers (pGSN), synthesized via free radical polymerization with these 3 moieties, were then grafted onto polydimethylsiloxane (PDMS).
View Article and Find Full Text PDFSurface functionalization of polymeric porous substrates is one of the most important requirements to enhance their applications in the biomedical field. In this study, we achieved photoinduced surface modification using a highly efficient reaction of hydrophilic polymers bearing phosphorylcholine groups. Polymers composed of 2-methacryloyloxyethyl phosphorylcholine (MPC) units and 2-( N-ethylanilino)ethyl methacrylate units were synthesized with attention to the polymer architectures.
View Article and Find Full Text PDFCationic vectors are ideal candidates for gene delivery thanks to their capability to carry large gene inserts and their scalable production. However, their cationic density gives rise to high cytotoxicity. We present the proper designed core-shell polyplexes made of either poly(ethylene imine) (PEI) or poly(2-dimethylamino ethyl methacrylate) (PDMAEMA) as the core and zwitterionic poly(acrylic acid)-block-poly(sulfobetaine methacrylate) (PAA-b-PSBMA) diblock copolymer as the shell.
View Article and Find Full Text PDFACS Appl Mater Interfaces
June 2014
Herein, a pseudozwitterionic structure bearing moieties with mixed positive and negative charges is introduced to develop a potential biomaterial for wound dressing applications. New mixed-charge matrices were prepared by copolymerization of the negatively charged 3-sulfopropyl methacrylate (SA) and positively charged [2-(methacryloyloxy)ethyl] trimethylammonium (TMA) onto expanded polytetrafluoroethylene (ePTFE) membranes. The charge balance was effectively regulated through the control of the initial SA/TMA ratio.
View Article and Find Full Text PDFDevelopment of bioinert membranes to prevent blood clotting, tissue adhesion, and bacterial attachment is important for the wound healing process. In this work, two wound-contacting membranes of expanded poly(tetrafluoroethylene) (ePTFE) grafted with zwitterionic poly(sulfobetaine methacrylate) (PSBMA) and hydrophilic poly(ethylene glycol) methacrylate (PEGMA) via atmospheric plasma-induced surface copolymerization were studied. The surface grafting chemical structure, hydrophilicity, and hydration capability of the membranes were determined to illustrate the correlations between bioadhesive properties and wound recovery of PEGylated and zwitterionic ePTFE membranes.
View Article and Find Full Text PDFIn this work, the hemocompatibility of zwitterionic polypropylene (PP) fibrous membranes with varying grafting coverage of poly(sulfobetaine methacrylate) (PSBMA) via plasma-induced surface polymerization was studied. Charge neutrality of PSBMA-grafted layers on PP membrane surfaces was controlled by the low-pressure and atmospheric plasma treatment in this study. The effects of grafting composition, surface hydrophilicity, and hydration capability on blood compatibility of the membranes were determined.
View Article and Find Full Text PDFThis study applied a pilot-scale trickle-bed air biofilter (TBAB) system for treating waste gas emitted from the breather vent of a vertical fixed roof storage tank containing p-xylene (p-X) liquid. The volatile organic compound (VOC) concentration of the waste gas was related to ambient temperature as well as solar radiation, peaking at above 6300 ppmv of p-X and 25000 ppmv of total hydrocarbons during the hours of 8 AM to 3 PM. When the activated carbon adsorber was employed as a VOC buffer, the peak waste gas VOC concentration was significantly reduced resulting in a stably and efficiently performing TBAB system.
View Article and Find Full Text PDF