Publications by authors named "Sheng-Bing Yu"

Melanin has been found to interact with a number of molecules including metal ions, antibiotics and proteins. In this study, we showed how melanin from bacteria can interact with double-stranded DNA. Investigation using capillary electrophoresis, various spectroscopic techniques and circular dichroism found that melanin interacts with DNA by intercalating between the base pairs of DNA.

View Article and Find Full Text PDF

The purpose of this study was to introduce a simple and sensitive plasmid-based noncellular system to evaluate the photoprotection of bacterial melanin on DNA damage against ultraviolet (UV) radiation. Plasmid DNA was used to assess the role of melanin in different ranges of UV using a series of in vitro assays. Fluorometric measurements suggested that melanin could efficiently scavenge reactive oxygen species (ROS) generated by UVA irradiation in solution, and the scavenging capability was proportional to the pigment concentration.

View Article and Find Full Text PDF

Dilute linear poly(N-isopropylacrylamide) (PNIPAM) in Tris-Mes-EDTA (TME) buffer was used as sieving matrix for capillary electrophoresis (CE) of plasmid DNA and plasmid topological isomers induced by melanin in uncoated capillary. At the optimized condition of 0.1% (w/v) PNIPAM in TME buffer, base line separation of the plasmid DNA ladder (2-12 kbp) was achieved within 15 min.

View Article and Find Full Text PDF

A buffer consisting of tris(hydroxymethyl)aminomethane, 2-(N-moropholino)ethanesulfonic acid (Mes) and EDTA with constant ion strength was used to investigate the effect of buffer pH on the dynamic coating behavior of poly(N-isopropylacrylamide) (PNIPAM) for DNA separation. The atomic force microscopy (AFM) image illustrated that PNIPAM in lower-pH buffer was much more efficient in covering a silica wafer than that in higher-pH buffer. The coating performance of PNIPAM was also quantitatively analyzed by Fourier transform IR attenuated total reflectance spectroscopy and by measuring the electroosmotic flow (EOF).

View Article and Find Full Text PDF