Publications by authors named "Sheng-An Su"

Mechanical force is the basis of cardiovascular development, homeostasis, and diseases. The perception and response of mechanical force by the cardiovascular system are crucial. However, the molecular mechanisms mediating mechanotransduction in the cardiovascular system are not yet understood.

View Article and Find Full Text PDF
Article Synopsis
  • Erythropoietin-producing hepatoma (Eph) receptors are a major family of receptor tyrosine kinases that influence key biological processes and are involved in cancer progression.
  • These receptors interact with ephrins to regulate essential functions like embryo development, tissue formation, and tumor cell survival.
  • Recent studies have shown their significant role in cardiovascular health, affecting conditions such as atherosclerosis and cardiac fibrosis, highlighting their potential for new treatments in heart-related diseases.
View Article and Find Full Text PDF

Ventricular arrhythmogenesis is a key cause of sudden cardiac death following myocardial infarction (MI). Accumulating data show that ischemia, sympathetic activation, and inflammation contribute to arrhythmogenesis. However, the role and mechanisms of abnormal mechanical stress in ventricular arrhythmia following MI remain undefined.

View Article and Find Full Text PDF

Cardiac calcification is a crucial but underrecognized pathological process, greatly increasing the risk of cardiovascular diseases. Little is known about how cardiac fibroblasts, as a central mediator, facilitate abnormal mineralization. Erythropoietin-producing hepatoma interactor B2 (EphrinB2), previously identified as an angiogenic regulator, is involved in fibroblast activation, while its role in the osteogenic differentiation of cardiac fibroblasts is unknown.

View Article and Find Full Text PDF

Background: Angiogenesis is a promising strategy for those with peripheral artery disease. Macrophage-centered inflammation is intended to govern the deficiency of the angiogenic response after hindlimb ischemia. However, little is known about the mechanism of macrophage activation beyond signals from cytokines and chemokines.

View Article and Find Full Text PDF

Thyroid dysfunction and inflammation are individually implicated in the increased risk of heart failure. Given the regulatory role of thyroid hormones on immune cells, this study aimed to investigate their joint association in heart failure. Patients with pre-existing heart failure were enrolled when hospitalized between July 2019 and September 2021.

View Article and Find Full Text PDF

Cardiovascular calcification, a kind of ectopic mineralization in cardiovascular system, including atherosclerotic calcification, arterial medial calcification, valve calcification and the gradually recognized heart muscle calcification, is a complex pathophysiological process correlated with poor prognosis. Although several cell types such as smooth muscle cells have been proven critical in vascular calcification, the aetiology of cardiovascular calcification remains to be clarified due to the diversity of cellular origin. Fibroblasts, which possess remarkable phenotypic plasticity that allows rapid adaption to fluctuating environment cues, have been demonstrated to play important roles in calcification of vasculature, valve and heart though our knowledge of the mechanisms controlling fibroblast phenotypic switching in the calcified process is far from complete.

View Article and Find Full Text PDF

EphrinB2, a membrane-tethered ligand preferentially binding to its receptor EphB4, is ubiquitously expressed in all mammals. Through the particular bidirectional signaling, EphrinB2 plays a critical role during the development of cardiovascular system, postnatal angiogenesis physiologically and pathologically, and cardiac remodeling after injuries as an emerging role. This review highlights the pivotal involvement of EphrinB2 in heart, from developmental cardiogenesis to pathological cardiac remodeling process.

View Article and Find Full Text PDF

Vascular endothelial injury (VEI) triggers pathological processes in various cardiovascular diseases, such as coronary heart disease and hypertension. To further elucidate the in vivo pathological mechanisms of VEI, many animal models have been established. For the easiness of genetic manipulation and feeding, murine models become most commonly applied for investigating VEI.

View Article and Find Full Text PDF

Accumulating evidence revealed that mesenchymal stem cells (MSCs) confer cardioprotection against myocardial infarction (MI). However, the poor survival and engraftment rate of the transplanted cells limited their therapeutic efficacy in the heart. The enhanced leptin production associated with hypoxia preconditioning contributed to the improved MSCs survival.

View Article and Find Full Text PDF

Rationale: To date, our understanding of the role of HO-1 (heme oxygenase-1) in inflammatory diseases has mostly been limited to its catalytic function and the potential for its heme-related catabolic products to suppress inflammation and oxidative stress. Whether and how HO-1 in macrophages plays a role in the development of septic cardiac dysfunction has never been explored.

Objective: Here, we investigated the role of macrophage-derived HO-1 in septic cardiac dysfunction.

View Article and Find Full Text PDF

Cathepsin B (CatB) is a cysteine proteolytic enzyme widely expressed in various cells and mainly located in the lysosomes. It contributes to the pathogenesis and development of many diseases. However, the role of CatB in viral myocarditis (VMC) has never been elucidated.

View Article and Find Full Text PDF

Rationale: Cardiac fibrosis is a common feature in left ventricular remodeling that leads to heart failure, regardless of the cause. EphrinB2 (erythropoietin-producing hepatoma interactor B2), a pivotal bidirectional signaling molecule ubiquitously expressed in mammals, is crucial in angiogenesis during development and disease progression. Recently, EphrinB2 was reported to protect kidneys from injury-induced fibrogenesis.

View Article and Find Full Text PDF

Vascular remodeling refers to the alternations of function and structure in vasculature. A complex autocrine/paracrine set of cellular interaction is involved in vascular remodeling. Exosome, a newly identified natural nanocarrier and intercellular messenger, plays a pivotal role in regulating cell-to-cell communication.

View Article and Find Full Text PDF

Cardiac ankyrin repeat protein (CARP) is a nuclear transcriptional co-factor that has additional functions in the myoplasm as a component of the muscle sarcomere. Previous studies have demonstrated increased expression of CARP in cardiovascular diseases, however, its role in cardiomyocyte apoptosis is unclear and controversial. In the present study, we investigated possible roles of CARP in hypoxia/reoxygenation (H/R) -induced cardiomyocyte apoptosis and the underlying mechanisms.

View Article and Find Full Text PDF

Interleukin-17A, a pro-inflammatory cytokine, has a direct proapoptotic effect on cardiomyocytes. However, the specific mechanism has not been clarified. In the present study, an in-vitro model of cardiomyocyte apoptosis induced by IL-17A stimulation was employed and the roles of iNOS and Stat3 involved were investigated.

View Article and Find Full Text PDF

Myocardial infarction (MI) is one of the leading causes of death especially in developed countries. Although the advent of early myocardial reperfusion therapy contributes to decreasing the mortality of patients with MI, cardiac ischemia-reperfusion injury and adverse remodeling during the repair process still remain the major factors impairing cardiac function and resulting in unsatisfactory prognosis. Excessive inflammation and immune responses play a crucial role during the whole process of MI.

View Article and Find Full Text PDF

Inflammation plays an important role in atherosclerosis, which is also crucial for acute coronary syndrome (ACS). Recent studies have revealed that interleukin (IL)-17, which was regarded as a pro-inflammatory cytokine, has a dual function in the progress of ACS. In this review, we sum up both experimental and clinical studies on the relevance of IL-17 to atherosclerosis and its complications, and summarize the research progress on the effect of IL-17 on the atherosclerotic plaque stability and ACS onset.

View Article and Find Full Text PDF