Adenosine deaminases acting on RNA 1(ADAR1), an RNA editing enzyme that converts adenosine to inosine by deamination in double-stranded RNAs, plays an important role in occurrence and progression of various types of cancer. Ferroptosis has emerged as a hot topic of cancer research in recent years. We have previously reported that ADAR1 promotes breast cancer progression by regulating miR-335-5p and METTL3.
View Article and Find Full Text PDFBackground: The recruitment of a sufficient number of immune cells to induce an inflamed tumor microenvironment (TME) is a prerequisite for effective response to cancer immunotherapy. The immunological phenotypes in the TME of EGFR-mutated lung cancer were characterized as non-inflamed, for which immunotherapy is largely ineffective.
Methods: Global proteomic and phosphoproteomic data from lung cancer tissues were analyzed aiming to map proteins related to non-inflamed TME.
Doublecortin-like kinase 1 (DCLK1) is upregulated in many tumors and is a marker for tumor stem cells. Accumulating evidence suggests DCLK1 constitutes a promising drug target for cancer therapy. However, the regulation of DCLK1 kinase activity is poorly understood, particularly the function of its autoinhibitory domain (AID), and, moreover, no physiological activators of DCLK1 have presently been reported.
View Article and Find Full Text PDFMethionine sulfoxide reductase B1 (MsrB1) can catalyze both free and protein-bound R-methionine sulfoxides (R-MetO) to methionine (Met). It has been reported that MsrB1 plays an important role in the development of HCC and human bone osteosarcoma. However, little is known about the functions of MsrB1 in human colorectal cancer (CRC).
View Article and Find Full Text PDFCancers resist targeted therapeutics by drug-escape signaling. Multitarget drugs co-targeting cancer and drug-escape mediators (DEMs) are clinically advantageous. DEM coverage may be expanded by drug combinations.
View Article and Find Full Text PDF8-Chloro-adenosine (8-Cl-Ado) has been shown to exhibit its antitumor activity by inducing apoptosis in human lung cancer A549 and H1299 cells or autophagy in chronic lymphocytic leukemia, and MDA-MB-231 and MCF-7 breast cancer cells. Adenosine deaminases acting on RNA 1 (ADAR1) is tightly associated with cancer development and progression. The aim of this study was to investigate the role of ADAR1 in the proliferation of MDA-MB-231 and SK-BR-3 breast cancer cell lines after 8-Cl-Ado exposure and its possible mechanisms.
View Article and Find Full Text PDFAberrant expression of protein arginine methyltransferases (PRMTs) has been implicated in a number of cancers, making PRMTs potential therapeutic targets. But it remains not well understood how PRMTs impact specific oncogenic pathways. We previously identified PRMTs as important regulators of cell growth in neuroblastoma, a deadly childhood tumor of the sympathetic nervous system.
View Article and Find Full Text PDFHerein, we report the discovery of a series of thieno[2,3-d]pyrimidin-4(3H)-one derivatives as a new class of ROCK inhibitors. Structure-activity relationship studies of these compounds led to the identification of the most potent compound, 3-(3-methoxybenzyl)-6-(1H-pyrrolo[2,3-b]pyridin-4-yl)thieno[2,3-d]pyrimidin-4(3H)-one (8k), which showed IC values of 0.004 μM and 0.
View Article and Find Full Text PDFFood Chem Toxicol
January 2020
Determining chemical carcinogenicity in the early stages of drug discovery is fundamentally important to prevent the adverse effect of carcinogens on human health. There has been a recent surge of interest in developing computational approaches to predict chemical carcinogenicity. However, the predictive power of many existing approaches is limited, and there is plenty of room for improvement.
View Article and Find Full Text PDFSince publication of this article, the authors have noticed that there were errors in Fig. 1b (the CT 26 cells colony formation images) and Fig. 7c (the vehicle group images).
View Article and Find Full Text PDFLimited drug response and severe drug resistance confer the high mortality of non-small-cell lung cancer (NSCLC), a leading cause of cancer death worldwide. There is an urgent need for novel treatment against NSCLC. Receptor tyrosine kinase-like orphan receptor 1 (ROR1) is aberrantly overexpressed and participats in NSCLC development and EGFR-TKIs-induced drug resistance.
View Article and Find Full Text PDFPeptidyl-prolyl cis-trans isomerase Pin1 plays a crucial role in the development of human cancers. Recently, we have disclosed that Pin1 regulates the biogenesis of miRNA, which is aberrantly expressed in HCC and promotes HCC progression, indicating the therapeutic role of Pin1 in HCC therapy. Here, 7-(benzyloxy)-3,5-dihydroxy-2-(4-methoxyphenyl)-8-(3-methylbut-2-en-1-yl)-4H-chromen-4-one (AF-39) was identified as a novel Pin1 inhibitor.
View Article and Find Full Text PDFThe clinical advantage of co-targeting cancer drug escape has been indicated by the percentage of these co-targeting drugs among all multi-target drugs in clinics and clinical trials. This clinical advantage needs to be further interrogated from such perspectives as the clinical impact of multi-target inhibition of drug-escape mediators. This impact may be reflected by drug sales data, that is, multi-target inhibition of higher number of drug-escape mediators favors the expanded coverage of drug-resistant patients leading to higher sales.
View Article and Find Full Text PDFHuman lung cancer H1299 (p53-null) cells often display enhanced susceptibility to chemotherapeutics comparing to A549 (p53-wt) cells. However, little is known regarding to the association of DNA damage-response (DDR) pathway heterogeneity with drug sensitivity in these two cells. We investigated the DDR pathway differences between A549 and H1299 cells exposed to 8-chloro-adenosine (8-Cl-Ado), a potential anticancer drug that can induce DNA double-strand breaks (DSBs), and found that the hypersensitivity of H1299 cells to 8-Cl-Ado is associated with its DSB overaccumulation.
View Article and Find Full Text PDFTreatment of non-small-cell lung cancers (NSCLCs) harboring primary EGFR oncogenic mutations such as L858R and exon 19 deletion delE746_A750 (Del-19) using gefitinib/erlotinib ultimately fails due to the emergence of T790M mutation. Though WZ4002/CO-1686/AZD9291 are effective in overcoming EGFR T790M by targeting Cys797 via covalent bonding, their efficacy is again limited due to the emergence of C797S mutation. New agents effectively inhibiting EGFR T790M without covalent linkage through Cys 797 may solve this problem.
View Article and Find Full Text PDFB cell lymphoma (BCL) is the most frequently diagnosed type of non-Hodgkin lymphoma (NHL), and accounts for about 4% of all cancers in the USA. Kinases spleen tyrosine kinase (Syk), Src, and Janus kinase 2 (JAK2) have been thought as potential targets for the treatment of BCL. We have recently developed a multikinase inhibitor, SKLB-850, which potently inhibits Syk, Src, and JAK2.
View Article and Find Full Text PDFTrends Pharmacol Sci
March 2018
The selection of the right drug targets is critically important for the successful and cost-effective development and clinical testing of drugs. A 2009 paper reported an in silico prospective prediction of the clinical potential of 156 targets of clinical trial drugs (all of these targets were without an approved drug at the time of the paper's publication). Eight years later, the assessment of the clinical status of these targets revealed impressive capability of the in silico method in prospectively predicting the clinical success of drug targets.
View Article and Find Full Text PDFThe RET tyrosine kinase is an important therapeutic target for medullary thyroid cancer (MTC), and drug resistance mutations of RET, particularly V804M and V804L, are a main challenge for the current targeted therapy of MTC based on RET inhibitors. In this investigation, we report the structural optimization and structure-activity relationship studies of N-phenyl-7,8-dihydro-6H-pyrimido[5,4-b][1,4]oxazin-4-amine derivatives as a new class of RET inhibitors. Among all the obtained kinase inhibitors, 1-(5-(tert-butyl)isoxazol-3-yl)-3-(4-((6,7,8,9-tetrahydropyrimido[5,4-b][1,4]oxazepin-4-yl)amino)phenyl)urea (17d) is a multi-kinase inhibitor and potently inhibits RET and its drug resistance mutants.
View Article and Find Full Text PDFAutophagy inducers represent new promising agents for the treatment of a wide range of medical illnesses. However, safe autophagy inducers for clinical applications are lacking. Inhibition of cdc2-like kinase 1 (CLK1) was recently found to efficiently induce autophagy.
View Article and Find Full Text PDFSmall-molecule target identification is an important and challenging task for chemical biology and drug discovery. Structure-based virtual target identification has been widely used, which infers and prioritizes potential protein targets for the molecule of interest (MOI) principally via a scoring function. However, current "universal" scoring functions may not always accurately identify targets to which the MOI binds from the retrieved target database, in part due to a lack of consideration of the important binding features for an individual target.
View Article and Find Full Text PDFMotivation: Genetic and gene expression variations within and between populations and across geographical regions have substantial effects on the biological phenotypes, diseases, and therapeutic response. The development of precision medicines can be facilitated by the OMICS studies of the patients of specific ethnicity and geographic region. However, there is an inadequate facility for broadly and conveniently accessing the ethnic and regional specific OMICS data.
View Article and Find Full Text PDFHerein we report the discovery of a series of new small molecule inhibitors of histone lysine demethylase 4D (KDM4D). Molecular docking was first performed to screen for new KDM4D inhibitors from various chemical databases. Two hit compounds were retrieved.
View Article and Find Full Text PDFCrystallographic analyses of the VIM-5 metallo-β-lactamase (MBL) with isoquinoline inhibitors reveal non zinc ion binding modes. Comparison with other MBL-inhibitor structures directed addition of a zinc-binding thiol enabling identification of potent B1 MBL inhibitors. The inhibitors potentiate meropenem activity against clinical isolates harboring MBLs.
View Article and Find Full Text PDF