Phaseic acid (PA) is a phytohormone regulating important physiological functions in higher plants. Here, we show the presence of naturally occurring (-)-PA in mouse and rat brains. (-)-PA is exclusively present in the choroid plexus and the cerebral vascular endothelial cells.
View Article and Find Full Text PDFObjectives: To investigate whether curcumin regulates Notch signaling to cause neuroprotection and neurogenesis after focal ischemia reperfusion injury.
Method: Focal ischemia reperfusion injury was modeled in rats by occluding the middle cerebral artery. These animals were given either curcumin (300 mg/kg) or corn oil (vehicle) by intraperitoneal injection starting 1 h after stroke and continuing for 7 d.
Semaphorin 3A (Sema3A) increased significantly in mouse brain following cerebral ischemia. However, the role of Sema3A in stroke brain remains unknown. Our aim was to determine wether Sema3A functions as a vascular permeability factor and contributes to ischemic brain damage.
View Article and Find Full Text PDFIncreased brain infiltration of polymorphonuclear neutrophils (PMNs) occurs early after stroke and is important in eliciting brain inflammatory response during stroke recovery. In order to understand the molecular mechanism of PMN entry, we investigated the expression and requirement for Slit1, a chemorepulsive guidance cue, and its cognate receptor, Robo1, in a long-term recovery mouse model of cerebral ischemia. The expression levels of Robo1 were significantly decreased bilaterally at 24h following reperfusion.
View Article and Find Full Text PDFCRMP proteins play critical regulatory roles during semaphorin-mediated neurite outgrowth, neuronal differentiation and death. Albeit having a high degree of structure and sequence resemblance to that of liver dihydropyrimidinase, purified rodent brain CRMPs do not hydrolyze dihydropyrimidinase substrates. Here we found that mouse CRMP3 has robust histone H4 deacetylase activity.
View Article and Find Full Text PDFMembrane rafts, rich in sphingolipids and cholesterol, play an important role in neuronal membrane domain-specific signaling events, maintaining synapses and dendritic spines. The purpose of this study is to examine the neuronal response to membrane raft disruption. Membrane rafts of 8 DIV primary neuronal cultures were isolated based on the resistance to Triton X-100 and ability to float in sucrose gradients.
View Article and Find Full Text PDFMicroglia are the 'immune cells' of the brain and their activation plays a vital role in the pathogenesis of many neurodegenerative diseases. Activated microglia produce high levels of pro-inflammatory factors, such as TNFα, causing neurotoxicity. Here we show that vimentin played a key role in controlling microglia activation and neurotoxicity during cerebral ischemia.
View Article and Find Full Text PDFA synthetic human V(L) phage display library, created by the randomization of all complementarity-determining regions (CDRs) in a V(L) scaffold, was panned against three test antigens to determine the propensity of the library to yield non-aggregating binders. A total of 22 binders were isolated against the test antigens and the majority (20) were monomeric. Thus, human V(L) repertoires provide an efficient source of non-aggregating binders and represent an attractive alternative to human V(H) repertoires, which are notorious for containing high proportions of aggregating species.
View Article and Find Full Text PDFDystonin/Bpag1 is a cytoskeletal linker protein whose loss of function in dystonia musculorum (dt) mice results in hereditary sensory neuropathy. Although loss of expression of neuronal dystonin isoforms (dystonin-a1/dystonin-a2) is sufficient to cause dt pathogenesis, the diverging function of each isoform and what pathological mechanisms are activated upon their loss remains unclear. Here we show that dt(27) mice manifest ultrastructural defects at the endoplasmic reticulum (ER) in sensory neurons corresponding to in vivo induction of ER stress proteins.
View Article and Find Full Text PDFGangliosides, a member of the glycosphingolipid family, are heterogeneously expressed in biological membranes and are particularly enriched within the central nervous system. Gangliosides consist of mono- or poly-sialylated oligosaccharide chains of variable lengths attached to a ceramide unit and are found to be intimately involved in brain disease development. The purpose of this study is to examine the spatial profile of ganglioside species using matrix-assisted laser desorption/ionization (MALDI) imaging (IMS) following middle cerebral artery occlusion (MCAO) reperfusion injury in the mouse.
View Article and Find Full Text PDFBrain microglia are resident macrophage-like cells representing the first and main form of active immune response during brain injury. Microglia-mediated inflammatory events in the brain are known to be associated with chronic degenerative diseases such as Multiple Sclerosis, Parkinson's, or Alzheimer's disease. Therefore, identification of mechanisms activating microglia is not only important in the understanding of microglia-mediated brain pathologies, but may also lead to the development of new anti-inflammatory drugs for the treatment of chronic neurodegenerative diseases.
View Article and Find Full Text PDFStroke is the third leading cause of death and disability in North America and is becoming the most frequent cause of death in the rapid developing China. Protecting neurons in order to minimize brain damage represents an effective approach towards stroke therapeutics. Our recent study demonstrated that 2-(-2-benzofuranyl)-2-imidazoline (2-BFI), a ligand for imidazoline I(2) receptors, is potently neuroprotective against stroke, possibly through transiently antagonizing NMDA receptor activities.
View Article and Find Full Text PDFMembrane rafts, rich in sphingolipids and cholesterol, are membrane microdomains important in neuronal domain-specific signaling events such as during axonal outgrowth and neuronal death. The present study seeks to determine the spatiotemporal association of several axonal guidance signaling molecules with membrane rafts. These molecules are Neuropilin-1 (NRP-1), Fer Kinase, and collapsin response mediator proteins (CRMPs), which are known to have important functions in axonal outgrowth and neuronal death caused by cerebral ischemia.
View Article and Find Full Text PDFNeuropilins (NRPs) are receptors for the major chemorepulsive axonal guidance cue semaphorins (Sema). The interaction of Sema3A/NRP1 during development leads to the collapse of growth cones. Here we show that Sema3A also induces death of cultured cortical neurons through NRP1.
View Article and Find Full Text PDFNeuropilin 2 (NRP2) is a type I transmembrane protein that binds to distinct members of the class III secreted Semaphorin subfamily. NRP2 plays important roles in repulsive axon guidance, angiogenesis and vasculogenesis through partnering with co-receptors such as vascular endothelial growth factor receptors (VEGFRs) during development. Emerging evidence also suggests that NRP2 contributes to injury response and environment changes in adult brains.
View Article and Find Full Text PDFIntracellular calcium ([Ca(2+)]i) influx through N-methyl-d-aspartic acid (NMDA) receptors in cortical neurons is central to NMDA receptor-mediated excitotoxicity. Drugs that uncompetitively modulate NMDA receptor-mediated [Ca(2+)]i influx are potential leads for development to treat NMDA receptor-mediated neuronal damage since these drugs spare NMDA receptor normal functions. Ligands to alpha(2)-adrenoceptors and imidazoline I(2) receptors confer neuroprotection possibility through modulating NMDA receptor-mediated [Ca(2+)]i influx.
View Article and Find Full Text PDFBasic fibroblast growth factor (bFGF) is a known neuroprotectant against a number of brain injury conditions such as cerebral ischemia. However, bFGF also regulates a plethora of brain developmental processes and functions as a strong mitogen. Therefore, unregulated long-term expression of bFGF in brain may potentially be tumorigenic, limiting its utility in brain therapy.
View Article and Find Full Text PDFIntracellular calcium influx through NMDA receptors triggers a cascade of deleterious signaling events which lead to neuronal death in neurological conditions such as stroke. However, it is not clear as to the molecular mechanism underlying early damage response from axons and dendrites which are important in maintaining a network essential for the survival of neurons. Here, we examined changes of axons treated with glutamate and showed the appearance of betaIII-tubulin positive varicosities on axons before the appearance of neuronal death.
View Article and Find Full Text PDFCollapsin response mediator proteins (CRMPs) are key modulators of cytoskeletons during neurite outgrowth in response to chemorepulsive guidance molecules. However, their roles in adult injured neurons are not well understood. We previously demonstrated that CRMP3 underwent calcium-dependent N-terminal protein cleavage during excitotoxicity-induced neurite retraction and neuronal death.
View Article and Find Full Text PDFAmphibians secrete small antimicrobial polypeptides from their skin that have been explored as alternatives to conventional antibiotics. In this study, mass spectrometry was used to identify and characterise protein secretions from the skin of a Chinese frog, Rana chensinensis. The skin of this kind of frog has been used in traditional Chinese medicine for centuries as a remedy against inflammation.
View Article and Find Full Text PDFInt Rev Cell Mol Biol
August 2008
Successful axonal outgrowth in the adult central nervous system (CNS) is central to the process of nerve regeneration and brain repair. To date, much of the knowledge on axonal guidance and outgrowth comes from studies on neuritogenesis and patterning during development where distal growth cones constantly sample the local environment and respond to specific physical and trophic influences. Opposing permissive (e.
View Article and Find Full Text PDFStrategies to provide neuroprotection and to promote regenerative axonal outgrowth in the injured brain are thwarted by the plethora of axon growth inhibitors and the ligand promiscuity of some of their receptors. Especially, new neurons derived from ischemia-stimulated neurogenesis must integrate this multitude of inhibitory molecular cues, generated as a result of cortical damage, into a functional response. More often than not the response is one of growth cone collapse, axonal retraction and neuronal death.
View Article and Find Full Text PDFThe bioactive lipid mediator platelet activating factor (PAF) is recognized as a key effecter of neuronal apoptosis, yet it is not clear whether its G-protein coupled receptor (PAFR) initiates or prevents PAF neurotoxicity. Using PAFR-/- and congenic wild-type mice, we show that PAF triggers caspase-3/7 activity and neuronal death in PAFR-/- but not PAFR+/+ cerebellar granule neurons. Restoring receptor expression by recombinant adenoviral infection protected cells from PAF challenge.
View Article and Find Full Text PDFCollapsin response mediator proteins (CRMPs) are important brain-specific proteins with distinct functions in modulating growth cone collapse and axonal guidance during brain development. Our previous studies have shown that calpain cleaves CRMP3 in the adult mouse brain during cerebral ischemia [S.T.
View Article and Find Full Text PDFParkinson's disease (PD) and dementia with Lewy bodies (DLB) are both characterized pathologically by the presence of neuronal inclusions termed Lewy bodies (LBs). A common feature found in LBs are aggregates of alpha-synuclein (alpha-Syn), and although it is now recognized that alpha-Syn is the major building block for these toxic filaments, the mechanism of how this occurs remains unknown. In the present study, we demonstrate that proteolytic processing of alpha-Syn by the protease calpain I leads to the formation of aggregated high-molecular weight species and adoption of a beta-sheet structure.
View Article and Find Full Text PDF