Soil organic nitrogen (N) mineralization not only supports ecosystem productivity but also weakens carbon and N accumulation in soils. Recalcitrant (mainly mineral-associated organic matter) and labile (mainly particulate organic matter) organic materials differ dramatically in nature. Yet, the patterns and drivers of recalcitrant (M) and labile (M) organic N mineralization rates and their consequences on ecosystem N retention are still unclear.
View Article and Find Full Text PDFSci Total Environ
November 2023
Factors influencing rice (Oryza sativa L.) yield mainly include nitrogen (N) fertilizer, climate and soil properties. However, a comprehensive analysis of the role of climatic factors and soil physical and chemical properties and their interactions in controlling global yield and nitrogen use efficiency (e.
View Article and Find Full Text PDFThe effects of exotic plants on soil nitrogen (N) transformations may influence species invasion success. However, the complex interplay between invasive plant N uptake and N transformation in soils remains unclear. In the present study, a series of N-labeled pot experiments were carried out with Solidago canadensis L.
View Article and Find Full Text PDF