Activating mutations in Gαq proteins, which form the α subunit of certain heterotrimeric G proteins, drive uveal melanoma oncogenesis by triggering multiple downstream signaling pathways, including PLC/PKC, Rho/Rac, and YAP. Here we show that the small GTPase ARF6 acts as a proximal node of oncogenic Gαq signaling to induce all of these downstream pathways as well as β-catenin signaling. ARF6 activates these diverse pathways through a common mechanism: the trafficking of GNAQ and β-catenin from the plasma membrane to cytoplasmic vesicles and the nucleus, respectively.
View Article and Find Full Text PDFMps1, also known as TTK, is a mitotic checkpoint protein kinase that has become a promising new target of cancer research. In an effort to improve the lead-likeness of our recent Mps1 purine lead compounds, a scaffold hopping exercise has been undertaken. Structure-based design, principles of conformational restriction, and subsequent scaffold hopping has led to novel pyrrolopyrimidine and quinazoline Mps1 inhibitors.
View Article and Find Full Text PDFModulation of Hsp90 (heat shock protein 90) function has been recognized as an attractive approach for cancer treatment, since many cancer cells depend on Hsp90 to maintain cellular homeostasis. This has spurred the search for small-molecule Hsp90 inhibitors. Here we describe our lead optimization studies centered on the purine-based Hsp90 inhibitor 28a containing a piperidine moiety at the purine N9 position.
View Article and Find Full Text PDFEfforts to optimize biological activity, novelty, selectivity and oral bioavailability of Mps1 inhibitors, from a purine based lead MPI-0479605, are described in this Letter. Mps1 biochemical activity and cytotoxicity in HCT-116 cell line were improved. On-target activity confirmation via mechanism based G2/M escape assay was demonstrated.
View Article and Find Full Text PDFDer is an essential and widely conserved GTPase that assists assembly of a large ribosomal subunit in bacteria. Der associates specifically with the 50S subunit in a GTP-dependent manner and the cells depleted of Der accumulate the structurally unstable 50S subunit, which dissociates into an aberrant subunit at a lower Mg(2+) concentration. As Der is an essential and ubiquitous protein in bacteria, it may prove to be an ideal cellular target against which new antibiotics can be developed.
View Article and Find Full Text PDFWe have shown previously that the target of the potent cytotoxic agent 4-[(7-bromo-2-methyl-4-oxo-3H-quinazolin-6-yl)methyl-prop-2-ynylamino]-N-(3-pyridylmethyl)benzamide (CB38065, 1) is nicotinamide phosphoribosyltransferase (Nampt). With its cellular target known we sought to optimize the biochemical and cellular Nampt activity of 1 as well as its cytotoxicity. It was found that a 3-pyridylmethylamide substituent in the A region was critical to cellular Nampt activity and cytotoxicity, although other aromatic substitution did yield compounds with submicromolar enzymatic inhibition.
View Article and Find Full Text PDFWe have identified a rare HIV-1 protease (PR) mutation, I47A, associated with a high level of resistance to the protease inhibitor lopinavir (LPV) and with hypersusceptibility to the protease inhibitor saquinavir (SQV). The I47A mutation was found in 99 of 112,198 clinical specimens genotyped after LPV became available in late 2000, but in none of 24,426 clinical samples genotyped from 1998 to October 2000. Phenotypic data obtained for five I47A mutants showed unexpected resistance to LPV (86- to >110-fold) and hypersusceptibility to SQV (0.
View Article and Find Full Text PDFMutations in HIV-1 drug targets lead to resistance and consequent therapeutic failure of antiretroviral drugs. Phenotypic resistance assays are time-consuming and costly, and genotypic rules-based interpretations may fail to predict the effects of multiple mutations. We have developed a computational procedure that rapidly evaluates changes in the binding energy of inhibitors to mutant HIV-1 PR variants.
View Article and Find Full Text PDFLarge-scale comparative analysis of drug-target polymorphism structures enables the rational design of next generation 'super drugs'--drugs that are less prone to development of drug resistance or that work for the largest possible fraction of the patient population. Furthermore, knowledge of the drug-target-shape repertoire that exists within the patient population enables predictions of likely clinical trial outcomes and response rates for drug efficacy. This gives information on the optimal drug candidates before the initiation of clinical trials.
View Article and Find Full Text PDFReplacement of Phe3 in the endogenous delta-opioid selective peptide deltorphin I with four optically pure stereoisomers of the topographically constrained, highly hydrophobic novel amino acid beta-isopropylphenylalanine (beta-iPrPhe) produced four pharmacologically different deltorphin I peptidomimetics. Radiolabeled ligand-binding assays and in vitro biological evaluation indicate that the stereoconfiguration of the iPrPhe residue plays a crucial role in determining the binding affinity, bioactivity and selectivity of [beta-iPrPhe3]deltorphin I analogs: a (2S,3R) configuration of the iPrPhe3 residue in [beta-iPrPhe3]deltorphin I provided the most desirable biological properties with binding affinity (IC50 = 2 nM), bioassay potency (IC50 = 1.23 nM in MVD assay) and exceptional selectivity for the delta-opioid receptor over the mu-opioid receptor (30 000).
View Article and Find Full Text PDFA comparative molecular modeling study of delta-opioid ligands was performed under the assumption that potent peptide and nonpeptide agonists may have common three-dimensional (3D) arrangement of pharmacophore groups upon binding to the delta-receptor. Low-energy conformations of the agonists 7-spiroindanyloxymorphone (SIOM) and 2-methyl-4a-alpha-(3-hydroxyphenyl)-1,2,3,4,4a,5,12, 12a-alpha-octahydro-quinolino[2,3,3-g]isoquinoline (TAN-67), and a partial agonist oxomorphindole (OMI) were determined by high-temperature molecular dynamics (MD). A good spatial overlap was found for the pharmacophore groups of SIOM, TAN-67, and OMI, including the basic nitrogen, phenol hydroxyl, and two aromatic ring.
View Article and Find Full Text PDFOn the basis of the structure-activity relationships of delta-opioid-selective peptide ligands and on a model of the proposed bioactive conformation for a potent and selective, conformationally constrained delta-opioid peptide ligand [(2S, 3R)-TMT1]DPDPE, a series of small organic peptide mimetic compounds targeted for the delta-opioid receptor have been designed, synthesized, and evaluated in radiolabeled ligand binding assays and in vitro bioassays. The new non-peptide ligands use piperazine as a template to present the most important pharmacophore groups, including phenol and phenyl groups and a hydrophobic moiety. This hydrophobic group was designed to mimic the hydrophobic character of the D-Pen residues in DPDPE, which has been found to be extremely important for increasing the binding affinity and selectivity of these non-peptide ligands for the delta-opioid receptor over the mu-opioid receptor.
View Article and Find Full Text PDFExtensive evidence gathered from structure-activity relationship analysis has identified and confirmed specific positions in the glucagon sequence that are important either for binding to its receptor or for signal transduction. Fifteen glucagon analogues have been designed and synthesized by incorporating structural changes in the N-terminal region of glucagon, in particular histidine-1, phenylalanine-6, and aspartic acid-9. This investigation was conducted to study the role of phenylalanine at position 6 on the glucagon mechanism of action.
View Article and Find Full Text PDFPeptide and protein biological activities depend on their three dimensionals structures in the free state and when interacting with their receptors/acceptors. The backbone conformations such as alpha-helix, beta-sheet, beta-turn, and so forth provide critical templates for the three-dimensional structure, but the overall shape and intrinsic stereoelectronic properties of the peptide or protein important for molecular recognition, signal transduction, enzymatic specificity, immunomodulation, and other biological effects depend on arrangement of the side chain groups in three-dimensional chi space (their chi 1, chi 2, etc. torsional angles).
View Article and Find Full Text PDFA critical issue in drug discovery utilizing combinatorial chemistry as part of the discovery process is the choice of scaffolds to be used for a proper presentation, in a three-dimensional space, of the critical elements of structure necessary for molecular recognition (binding) and information transfer (agonist/ antagonist). In the case of polypeptide ligands, considerations related to the properties of various backbone structures (alpha-helix, beta-sheets, etc.; phi, psi space) and those related to three-dimensional presentation of side-chain moieties (topography; chi (chi) space) must be addressed, although they often present quite different elements in the molecular recognition puzzle.
View Article and Find Full Text PDFThe role of position 10 in the beta-turn region of glucagon was investigated by substituting chiral constrained amino acids and other modifications in the N-terminal region. A series of glucagon analogues have been designed and synthesized by incorporating beta-methylphenylalanine isomers (2S,3S, 2S,3R, 2R,3R, and 2R,3S) at position 10 in order to explore the structural and topographical requirements of the glucagon receptor, and, in addition, utilizing previous studies which indicated that antagonism could be enhanced by modifications (des-His1, Glu9) and a bulky group at position 5. The structures of the new analogues are as follows: [des-His1,-Tyr5,Glu9]glucagon-NH2 (II), [des-His1,Tyr5,Glu9,Phe10]glucagon-NH2 (III), [des-His1,Tyr5,Glu9,-Ala10]glucagon-NH2 (IV), [des-His1,Tyr5,Glu9,(2S,3R)-beta-MePhe10]glucagon-NH2 (V), [des-His1,-Tyr5,Glu9,(2S,3S)-beta-MePhe10]glucagon-NH2 (VI), [des-His1,Tyr5,Glu9,D-Tyr10]glucagon-NH2 (VII), [des-His1,Tyr5,Glu9,D-Phe10]glucagon-NH2 (VIII), [des-His1,Tyr5,Glu9,D-Ala10]glucagon-NH2 (IX), [des-His1,Tyr5,Glu9,(2R,3R)-beta-MePhe10]glucagon-NH2 (X), and [des-His1,Tyr5,Glu9,(2R,3S)-beta-MePhe10]glucagon-NH2 (XI).
View Article and Find Full Text PDFConformational analysis of the neurohypophyseal hormones oxytocin (OT) and arginine-vasopressin (AVP) has been carried out using two different computational approaches and three force fields, namely by the Electrostatically Driven Monte Carlo (EDMC) method, with the Empirical Conformational Energy Program for Peptides (ECEPP/3) force field or with the ECEPP/3 force field plus a hydration-shell model, and by simulated-annealing molecular dynamics with the Consistent Valence Force Field (CVFF). The low-energy conformations obtained for both hormones were classified using the minimal-tree clustering algorithm and characterized according to the locations of beta-turns in the cyclic moieties. Calculations with the CVFF force field located conformations with a beta-turn at residues 3 and 4 as the lowest energy ones both for OT and for AVP.
View Article and Find Full Text PDFSolution conformations of beta-methyl-para-nitrophenylalanine4 analogues of the potent delta-opioid peptide cyclo[D-Pen2, D-Pen5]enkephalin (DPDPE) were studied by combined use of nmr and conformational energy calculations. Nuclear Overhauser effect connectivities and 3JHNC alpha H coupling constants measured for the (2S, 3S)-, (2S, 3R)-, and (2R, 3R)-stereoisomers of [beta-Me-p-NO2Phe4]DPDPE in DMSO were compared with low energy conformers obtained by energy minimization in the Empirical Conformational Energy Program for Peptides (ECEPP/2) force field. The conformers that satisfied all available nmr data were selected as probable solution conformations of these peptides.
View Article and Find Full Text PDFSeven side chain-constrained bicyclic alpha-melanotropin (alpha-MSH) analogues were designed and synthesized, their conformations analyzed, and their biological properties examined in the frog skin and lizard skin bioassays. The structure of these analogues is based on the central sequence Ac-Cys4-Xaa5-His6-DPhe7-Arg8-Trp9-Cys10-Lys11 -NH2 (Xaa5 = Asp or Glu) and has been extended on the N-terminal with the amino acids Ser1-Tyr2-Ser3 and on the C-terminal with Pro12-Val13 to more closely resemble the native hormone alpha-MSH. The analogue Ac-Cys4-Asp5-His6-DPhe7-Arg8-Trp9-Lys10-Cys11 -NH2 also was synthesized, and its conformational and biological properties were examined.
View Article and Find Full Text PDFJ Recept Signal Transduct Res
March 1997
Conformational energy calculations were carried out on three non-peptide antagonists of oxytocin and vasopressin: penicilide (compound 1; selective for oxytocin receptors), 1-¿1-[4-(3-acetylaminopropoxy(benzoyl]-4-piperidyl¿-3,4-dihydro-2( 1H)-quinoline (compound 2; selective for vasopressin V1 receptors) and 5-dimethylamino-1-¿(2-methylbenzylamino)-benzoyl¿-2,3,4,5-tetrahyd ro-1H-benzapine (compound 3; selective for vasopressin V2 receptors). The obtained low-energy conformations of compound 1 were compared with low-energy conformations of oxytocin (OT) and low-energy conformations of compounds 2 and 3 were compared with low-energy conformations of arginine vasopressin (AVP). It was found that the affinity of the non-peptide antagonists and their selectivity for vasopressin and oxytocin receptors is probably connected with mimicking the aromatic rings of the Tyr2 and the Phe3 residues of AVP in the case of compounds 2 and 3 and with mimicking the Tyr2 residue and the Ile3 or Leu8 residues of OT by the outer benzene ring and the isobutyl group of compound 1.
View Article and Find Full Text PDFTopographic design of peptide ligands using specialized topographically constrained amino acids can provide new insights into the stereochemical requirements for delta opioid receptors. A highly constrained tyrosine derivative, (2S,3S)-beta-methyl-2',6'-dimethyltyrosine [(2S,3S)-TMT], was prepared by asymmetric synthesis and incorporated in [D-Pen2,D-Pen5] enkephalin (delta 1) and Deltorphin I (delta 2). The results of binding assays and bioassays showed that the two analogues (3 and 4) acted very differently at delta opioid receptors.
View Article and Find Full Text PDFTo compare features of the receptor-binding sites (RBSs) of different influenza virus hemagglutinins (HA), binding of a number of synthetic sialic acid (SA) analogs and natural sialosides by a panel of about 30 human influenza A and B virus strains was studied in a competitive ligand binding assay. For all the viruses tested, the N-acetyl group of Neu5Ac, as well as the natural orientation of the carboxylic group at C2 and the hydroxylic group at C4, was essential for binding. Significant type- and subtype-specific differences were observed in virus recognition of asialic parts of sialosides.
View Article and Find Full Text PDFA combined 1H-NMR and molecular mechanics study of [Cpp1, Sar7]AVP was performed in order to select the most probable conformations in DMSO solutions. The NMR constraints obtained were employed in the selection of starting conformations of the cyclic moiety of the analog. In particular, the diminished accessibility of the Asn5 NH proton to solvent and the close contact between Cpp1 and Cys6 C alpha H protons suggests a beta-turn conformation at the Phe3-Gln4 residues.
View Article and Find Full Text PDFSets of low-energy backbone conformations of the active tetragastrin analogue Boc-Trp-Leu-Asp-Phe-NH2 and two competitive antagonists Boc-Trp-Leu psi (CH2NH)-Asp-Phe-NH2 and Boc-Trp-Leu-Asp-O-CH2-CH2-C6H5 were obtained using theoretical conformational analysis methods. Groups of the conformations were selected for the three analogues, allowing a spatial matching of Trp, Asp and Phe residues responsible for the gastrin receptor binding. Three conformations possessing the lowest energies among the geometrically similar structures of these three peptides are suggested as a model for the "receptor-bound" conformations of these analogues.
View Article and Find Full Text PDFTheoretical conformational analysis was carried out for several tetrapeptide analogues of beta-casomorphin and dermorphin containing a Phe residue in position 3. Sets of low-energy backbone structures of the mu-selective peptides [N-Me-Phe3, D-Pro4]-morphiceptin and Tyr-D-Orn-Phe-Asp-NH2 were obtained. These sets of structures were compared for geometrical similarity between themselves and with the low-energy conformations found for the delta-selective peptide Tyr-D-Cys-Phe-D-Pen-OH and nonactive peptide Tyr-Orn-Phe-Asp-NH2.
View Article and Find Full Text PDF