The incorporation of volatile solid additives has emerged as an effective strategy for enhancing the performance of organic solar cells (OSCs). However, the influence of the electronic structure of these additives on morphological evolution remains insufficiently understood. Herein, 1,4-Dibromobenzene (DBB) and 1,4-Difluoro-2,5-dibromobenzene (DFBB) are introduced as volatile additives into OSCs.
View Article and Find Full Text PDFThe integration of fluorinated benzothiadiazole (FBT) into donor-acceptor (D-A) copolymers represents a major advancement in the field of organic solar cells (OSCs). The fluorination process effectively fine-tunes the energy levels, reduces the highest occupied molecular orbital levels, and enhances the open-circuit voltages of the polymers. Furthermore, fluorination improves molecular packing and crystallinity, which significantly boosts the charge transport and overall device performance.
View Article and Find Full Text PDFWe synthesized two highly volatile and low-cost solid additives, PT and TFT. The inclusion of PT and TFT effectively influences the aggregation behavior of D18: L8-BO during the film-forming process. Consequently, PT and TFT-treated D18: L8-BO-based OSCs achieved power conversion efficiencies of 18.
View Article and Find Full Text PDFThe difluorobenzothiadizole (ffBT) unit is one of the most classic electron-accepting building blocks used to construct D-A copolymers for applications in organic solar cells (OSCs). Historically, ffBT-based polymers have achieved record power conversion efficiencies (PCEs) in fullerene-based OSCs owing to their strong temperature-dependent aggregation (TDA) characteristics. However, their excessive miscibility and rapid aggregation kinetics during film formation have hindered their performance with state-of-the-art non-fullerene acceptors (NFAs).
View Article and Find Full Text PDFNonfused ring electron acceptors (NFREAs) have emerged as promising materials for commercial applications in organic solar cells due to their straightforward synthesis process and cost-effectiveness. The rational design of their structural frameworks is crucial for enhancing device efficiency. In this study, we explore the use of maleimide and thiophene as key building blocks, employing cyclization engineering techniques.
View Article and Find Full Text PDFA spin-related photocurrent excited by circularly polarized light is observed near the electrodes on a few-layer ReS sample at room temperature. For both electrodes, the spatial distribution of the spin photocurrent shows a feature of two wings, with one positive and the other negative. In this work, it is suggested that this phenomenon arises from the inverse spin Hall effect due to the local electric field near the electrode.
View Article and Find Full Text PDF