Among arthropod vectors, ticks transmit the most diverse human and animal pathogens, leading to an increasing number of new challenges worldwide. Here we sequenced and assembled high-quality genomes of six ixodid tick species and further resequenced 678 tick specimens to understand three key aspects of ticks: genetic diversity, population structure, and pathogen distribution. We explored the genetic basis common to ticks, including heme and hemoglobin digestion, iron metabolism, and reactive oxygen species, and unveiled for the first time that genetic structure and pathogen composition in different tick species are mainly shaped by ecological and geographic factors.
View Article and Find Full Text PDFSmall-molecule mimetics of the β-hairpin flap of HIV-1 protease (HIV-1 PR) were designed based on a 1,4-benzodiazepine scaffold as a strategy to interfere with the flap-flap protein-protein interaction, which functions as a gated mechanism to control access to the active site. Michaelis-Menten kinetics suggested our small-molecules are competitive inhibitors, which indicates the mode of inhibition is through binding the active site or sterically blocking access to the active site and preventing flap closure, as designed. More generally, a new bioactive scaffold for HIV-1PR inhibition has been discovered, with the most potent compound inhibiting the protease with a modest K(i) of 11 μM.
View Article and Find Full Text PDFThe plasmepsins are specific aspartic proteases of the malaria parasite and a potential target for developing new antimalarial agents. Our previously reported peptidomimetic plasmepsin inhibitor with modified 2-aminoethylamino substituent, KNI-10740, was tested against chloroquine sensitive Plasmodium falciparum, D6, to be highly potent, however, the inhibitor exhibited about 5 times less activity against multi-drug resistant parasite (TM91C235). We hypothesized the potency reduction resulted from structural similarity between 2-aminoethylamino substituent of KNI-10740 and chloroquine.
View Article and Find Full Text PDFWe report the design and synthesis of a series of dipeptide-type inhibitors with novel P3 scaffolds that display potent inhibitory activity against SARS-CoV 3CLpro. A docking study involving binding between the dipeptidic lead compound 4 and 3CLpro suggested the modification of a structurally flexible P3 N-(3-methoxyphenyl)glycine with various rigid P3 moieties in 4. The modifications led to the identification of several potent derivatives, including 5c-k and 5n with the inhibitory activities (Ki or IC50) in the submicromolar to nanomolar range.
View Article and Find Full Text PDFThis work describes the design, synthesis, and evaluation of low-molecular weight peptidic SARS-CoV 3CL protease inhibitors. The inhibitors were designed based on the potent tripeptidic Z-Val-Leu-Ala(pyrrolidone-3-yl)-2-benzothiazole (8; Ki = 4.1 nM), in which the P3 valine unit was substituted with a variety of distinct moieties.
View Article and Find Full Text PDFWe describe here the design, synthesis and biological evaluation of a series of molecules toward the development of novel peptidomimetic inhibitors of SARS-CoV 3CL(pro). A docking study involving binding between the initial lead compound 1 and the SARS-CoV 3CL(pro) motivated the replacement of a thiazole with a benzothiazole unit as a warhead moiety at the P1' site. This modification led to the identification of more potent derivatives, including 2i, 2k, 2m, 2o, and 2p, with IC(50) or K(i) values in the submicromolar to nanomolar range.
View Article and Find Full Text PDFKinetic analysis of the mode of inhibition of cathepsin L by KGP94, a lead compound from a privileged library of functionalized benzophenone thiosemicarbazone derivatives, demonstrated that it is a time-dependent, reversible, and competitive inhibitor of the enzyme. These results are consistent with the formation of a transient covalent bond, and are supported by molecular modeling that places the thiocarbonyl of the inhibitor in proximity to the thiolate moiety of the enzyme active site Cys25. KGP94 significantly decreased the activity of cathepsin L toward human type I collagen, and impeded both migration and invasion of MDA-MB-231 human breast cancer cells.
View Article and Find Full Text PDFMining and mineral-processing wastes are one of the world's largest chronic waste concerns. Their reuse should be included in future sustainable development plans, but the potential impacts on a number of environmental processes are highly variable and must be thoroughly assessed. The chemical composition and geotechnical properties of the source rock determine which uses are most appropriate and whether reuse is economically feasible.
View Article and Find Full Text PDFA series of 36 thiosemicarbazone analogues containing the thiochromanone molecular scaffold functionalized primarily at the C-6 position were prepared by chemical synthesis and evaluated as inhibitors of cathepsins L and B. The most promising inhibitors from this group are selective for cathepsin L and demonstrate IC50 values in the low nanomolar range. In nearly all cases, the thiochromanone sulfide analogues show superior inhibition of cathepsin L as compared to their corresponding thiochromanone sulfone derivatives.
View Article and Find Full Text PDFWe used a combined approach of experiment and simulation to determine the helical population and folding pathway of a small helix forming blocked pentapeptide, Ac-(Ala)(5)-NH(2). Experimental structural characterization of this blocked peptide was carried out with far UV circular dichroism spectroscopy, FTIR, and NMR measurements. These measurements confirm the presence of the α-helical state in a buffer solution.
View Article and Find Full Text PDFA small library of 36 functionalized benzophenone thiosemicarbazone analogs has been prepared by chemical synthesis and evaluated for their ability to inhibit the cysteine proteases cathepsin L and cathepsin B. Inhibitors of cathepsins L and B have the potential to limit or arrest cancer metastasis. The six most active inhibitors of cathepsin L (IC50<85 nM) in this series incorporate a meta-bromo substituent in one aryl ring along with a variety of functional groups in the second aryl ring.
View Article and Find Full Text PDFA series of compounds bearing tetrahydronaphthalene, benzophenone, propiophenone, and related rigid molecular skeletons functionalized with thiosemicarbazone or unsaturated carbonyl moieties were prepared by chemical synthesis and evaluated for their ability to inhibit the enzyme cruzain. As potential treatment agents for Chagas' disease, three compounds from the group demonstrate potent inhibition of cruzain with IC(50) values of 17, 24, and 80 nM, respectively.
View Article and Find Full Text PDF