Publications by authors named "Shen-Lin Chang"

The geometric and electronic properties of Bi-adsorbed monolayer graphene, enriched by the strong effect of a substrate, are investigated by first-principles calculations. The six-layered substrate, corrugated buffer layer, and slightly deformed monolayer graphene are all simulated. Adatom arrangements are thoroughly studied by analyzing the ground-state energies, bismuth adsorption energies, and Bi-Bi interaction energies of different adatom heights, inter-adatom distance, adsorption sites, and hexagonal positions.

View Article and Find Full Text PDF

Hydrogenated silicenes possess peculiar properties owing to the strong H-Si bonds, as revealed by an investigation using first principles calculations. Various charge distributions, bond lengths, energy bands, and densities of states strongly depend on different hydrogen configurations and concentrations. The competition between strong H-Si bonds and weak sp(3) hybridization dominate the electronic properties.

View Article and Find Full Text PDF

Edge-decorated graphene nanoribbons are investigated with the density functional theory; they reveal three stable geometric structures. The first type is a tubular structure formed by the covalent bonds of decorating boron or nitrogen atoms. The second one consists of curved nanoribbons created by the dipole-dipole interactions between two edges when decorated with Be, Mg, or Al atoms.

View Article and Find Full Text PDF

The geometric and electronic properties of curved armchair graphene nanoribbons without hydrogen atoms are investigated by first-principles calculations. The edge-atom bond length and ground state energy dramatically vary with the arc angle. The zipping or unzipping requirements for energy, arc angle, and interaction distance depend on the ribbon width.

View Article and Find Full Text PDF