Boron-enhanced proton therapy has recently appeared as a promising approach to increase the efficiency of proton therapy on tumor cells, and this modality can further be improved by the use of boron nanoparticles (B NPs) as local sensitizers to achieve enhanced and targeted therapeutic outcomes. However, the mechanisms of tumor cell elimination under boron-enhanced proton therapy still require clarification. Here, we explore possible molecular mechanisms responsible for the enhancement of therapeutic outcomes under boron NP-enhanced proton therapy.
View Article and Find Full Text PDFBiochem Biophys Res Commun
November 2024
Introduction: Radioprotectors help to protect the body or at least minimize the negative consequences of radiation exposure. The present study aimed to assess the radioprotective potential of Helianthus tuberosus L. polysaccharide (HTLP) in vitality and micronuclei tests.
View Article and Find Full Text PDFPurpose: To evaluate intrafractional motion effects as a function of peak-to-peak motion and period during single-field, single-fraction and single-field, multifraction irradiation of the moving target in spot-scanning proton therapy.
Materials And Methods: An in-house dynamic phantom was used to simulate peak-to-peak motion of 5, 10, and 20 mm with periods of 2, 4, and 8 seconds. The dose distribution in the moving target was measured using radiochromic films.
Radiation dermatitis (RD) is one of the most common side effects of radiation therapy. However, to date, there is a lack of both specific treatments for RD and validated experimental animal models with the use of various sources of ionizing radiation (IR) applied in clinical practice. The aim of this study was to develop and validate a model of acute RD induced using proton radiation in mice.
View Article and Find Full Text PDFThis study presents data on the growth rate and frequency of induction of the solid form of Ehrlich's ascites carcinoma (EAC) in mice in the short and long term after inoculation of ascitic cells irradiated ex vivo with a proton beam in the dose range of 30-150 Gy. It was shown that the growth rate of solid tumors after inoculation of irradiated cells ex vivo coincided with the growth of tumors in the control group. The frequency of tumor induction in mice after inoculation of EAC cells irradiated at a dose of 30 Gy was 80%, 60 Gy-60%, 90 Gy-25%, and 120 Gy-10%; at irradiation at a dose of 150 Gy, no tumors appeared during the entire observation period.
View Article and Find Full Text PDFRadiat Environ Biophys
November 2023
Cognitive impairment is a remote effect of gamma radiation treatment of malignancies. The major part of the studies on the effect of proton irradiation (a promising alternative in the treatment of radio-resistant tumors and tumors located close to critical organs) on the cognitive abilities of laboratory animals and their relation to morphological changes in the brain is rather contradictory. The aim of this study was to investigate cognitive functions and the dynamics of changes in morphological parameters of hippocampal microglial cells after 7.
View Article and Find Full Text PDFProton therapy is one of the promising radiotherapy modalities for the treatment of deep-seated and unresectable tumors, and its efficiency can further be enhanced by using boron-containing substances. Here, we explore the use of elemental boron (B) nanoparticles (NPs) as sensitizers for proton therapy enhancement. Prepared by methods of pulsed laser ablation in water, the used B NPs had a mean size of 50 nm, while a subsequent functionalization of the NPs by polyethylene glycol improved their colloidal stability in buffers.
View Article and Find Full Text PDFPurpose: To investigate a novel optical markerless respiratory sensor for surface guided spot scanning proton therapy and to measure its main technical characteristics.
Methods: The main characteristics of the respiratory sensor including sensitivity, linearity, noise, signal-to-noise, and time delay were measured using a dynamic phantom and electrical measuring equipment on a laboratory stand. The respiratory signals of free breathing and deep-inspiration breath-hold patterns were acquired for various distances with a volunteer.
The effect of proton pencil beam scanning in the dose range of 4.5-15 Gy on the radiosensitivity of mice under irradiation in two regions of the Bragg curve was studied according to the criteria of 30-day survival, dynamics of death, and average lifespan of mice. The relative biological effectiveness (RBE) value of protons relative to X-ray radiation before and at the Bragg peak determined by the LD index was 0.
View Article and Find Full Text PDFThe combined effect of the irradiation with a proton pencil scanning beam (PBS) at a total dose of 80 Gy and neutron radiation at a dose of 5 Gy on the growth of solid Ehrlich ascites carcinoma (EAC) and the remote effects in tumor-bearing mice was studied. Combined irradiation of mice with neutrons before and after irradiation with PBS, as well as irradiation only with PBS, effectively suppressed the growth of solid EAC within 1 month. In terms of the frequency and severity of radiation-induced skin reactions of mice observed 15-40 days after therapy, neutron irradiation after the irradiation with PBS showed better values of these parameters as compared to only PBS; however, exposure to neutrons before PBS was more damaging as compared to the other two options.
View Article and Find Full Text PDFThe aim of this work was to study the effect of proton pencil beam scanning in the Bragg peak in the dose range of 0.1-1.5 Gy on the induction of cytogenetic damage in the bone marrow, reactive oxygen species (ROS) production in whole blood, and the state of lymphoid organs after total body irradiation of mice.
View Article and Find Full Text PDF