Publications by authors named "Shema R Abraham"

Conjugated polymers with chiral side chains are of interest in areas including chiral photonics, optoelectronics, and chemical and biological sensing. However, the low dissymmetry factors of most neat polymer thin films have limited their practical application. Here, a robust method to increase the absorption dissymmetry factor in a poly-fluorene-thiophene (PF8TS series) system is demonstrated by varying molecular weight and introducing an achiral plasticizer, polyethylene mono alcohol (PEM-OH).

View Article and Find Full Text PDF

Designing polymeric systems with ultra-high optical activity is instrumental in the pursuit of smart artificial chiroptical materials, including the fundamental understanding of structure/property relations. Herein, we report a diacetylene (DA) moiety flanked by chiral D- and L-FF dipeptide methyl esters that exhibits efficient topochemical photopolymerization in the solid phase to furnish polydiacetylene (PDA) with desired control over the chiroptical properties. The doping of the achiral gold nanoparticles provides plasmonic interaction with the PDAs to render asymmetric shape to the circular dichroism bands.

View Article and Find Full Text PDF

Advancing the emerging area of chiral photonics requires modeling-guided concepts of chiral material design to enhance optical activity and associated optical rotatory dispersion. Herein, we introduce conformational engineering achieved by tuning polymer backbone conjugation through introduction of thiophene structural units in a chiral fluorene polymer backbone. Our theoretical calculations reveal a relationship between the structural conformation and the resultant rotational strength.

View Article and Find Full Text PDF

We introduce a flame-based aerosol process for producing supported non-noble metal nanocatalysts from inexpensive aqueous metal salt solutions, using catalysts for the dry reforming of methane (DRM) as a prototype. A flame-synthesized nickel-doped magnesia (MgO) nanocatalyst (NiMgO-F) was fully physicochemically characterized and tested in a flow reactor system, where it showed stable DRM activity from 500 to 800 °C. A kinetic study was conducted, and apparent activation energies were extracted for the temperature range of 500-650 °C.

View Article and Find Full Text PDF