Publications by authors named "Shelton E Murinda"

Livestock manure, dairy lagoon effluent, and treated wastewater are known reservoirs of antibiotic resistance genes (ARGs), antibiotic-resistant bacteria (ARB), and virulence factor genes (VFGs), and their application to agricultural farmland could be a serious public health threat. However, their dissemination to agricultural lands and impact on important geochemical pathways such as the nitrogen (N) cycle have not been jointly explored. In this study, shotgun metagenomic sequencing and analyses were performed to examine the diversity and composition of microbial communities, ARGs, VFGs, and N cycling genes in different livestock manure/lagoon and treated wastewater collected from concentrated animal feeding operations (CAFOs) and a municipal wastewater treatment plant along the west coast of the United States.

View Article and Find Full Text PDF

The increases in per capita water consumption, coupled in part with global climate change have resulted in increased demands on available freshwater resources. Therefore, the availability of safe, pathogen-free drinking water is vital to public health. This need has resulted in global initiatives to develop sustainable urban water infrastructure for the treatment of wastewater for different purposes such as reuse water for irrigation, and advanced waste water purification systems for domestic water supply.

View Article and Find Full Text PDF

The pathogen profile of Escherichia coli mastitis reveals a complex etiology involving commensal, environmental, and other distinct E. coli pathotypes such as enteropathogenic E. coli and of recent, Shiga toxin-producing E.

View Article and Find Full Text PDF

The microbiological quality of treated waste water is always a concern when waste water is disposed to the environment. However, when treated appropriately, such water can serve many purposes to the general population. Therefore, the treatment and removal of contaminants from swine waste water by continuous flow-constructed wetlands involves complex biological, physical, and chemical processes that may produce better quality water with reduced levels of contaminants.

View Article and Find Full Text PDF

Dynamics of seasonal microbial community compositions in algae cultivation ponds are complex. However, there is very limited knowledge on bacterial communities that may play significant roles with algae in the bioconversion of manure nutrients to animal feed. In this study, water samples were collected during winter, spring, summer, and fall from the dairy lagoon effluent (DLE), high rate algae ponds (HRAP) that were fed with diluted DLE, and municipal waste water treatment plant (WWTP) effluent which was included as a comparison system for the analysis of total bacteria, Cyanobacteria, and microalgae communities using MiSeq Illumina sequencing targeting the 16S V4 rDNA region.

View Article and Find Full Text PDF

Microbial communities in terrestrial fresh water are diverse and dynamic in composition due to different environmental factors. The goal of this study was to undertake a comprehensive analysis of bacterial composition along different rivers and creeks and correlate these to land-use practices and pollutant sources. Here we used 454 pyrosequencing to determine the total bacterial community composition, and bacterial communities that are potentially of fecal origin, and of relevance to water quality assessment.

View Article and Find Full Text PDF

Escherichia coli populations originating from swine houses through constructed wetlands were analyzed for potential pathogens, antimicrobial susceptibility patterns, and genotypic diversity. Escherichia coli isolates (n = 493) were screened for the presence of the following virulence genes: stx1, stx2 and eae (Shiga toxin-producing E. coli [STEC]), heat-labile enterotoxin (LT) genes and heat stable toxin STa and STb (enterotoxigenic E.

View Article and Find Full Text PDF

Shiga toxin-producing Escherichia coli (STEC) are a major family of foodborne pathogens of public health, zoonotic, and economic significance in the United States and worldwide. To date, there are no published reports on use of recombinase polymerase amplification (RPA) for STEC detection. The primary goal of this study was to assess the potential application of RPA in detection of STEC.

View Article and Find Full Text PDF

Current microbial source tracking (MST) methods for water depend on testing for fecal indicator bacterial counts or specific marker gene sequences to identify fecal contamination where potential human pathogenic bacteria could be present. In this study, we applied 454 high-throughput pyrosequencing to identify bacterial pathogen DNA sequences, including those not traditionally monitored by MST and correlated their abundances to specific sources of contamination such as urban runoff and agricultural runoff from concentrated animal feeding operations (CAFOs), recreation park area, waste-water treatment plants, and natural sites with little or no human activities. Samples for pyrosequencing were surface water, and sediment collected from 19 sites.

View Article and Find Full Text PDF

Antibiotics are used extensively in the dairy industry to combat disease and to improve animal performance. Antibiotics such as penicillin, cephalosporin, streptomycin, and tetracycline are used for the treatment and prevention of diseases affecting dairy cows caused by a variety of gram-positive and gram-negative bacteria. Antibiotics are often administrated routinely to entire herds to prevent mastitis during the dry period.

View Article and Find Full Text PDF

Agricultural and urban runoffs may be major sources of pollution of water bodies and major sources of bacteria affecting the quality of drinking water. Of the different pathways by which bacterial pathogens can enter drinking water, this one has received little attention to date; that is, because soils are often considered to be near perfect filters for the transport of bacterial pathogens through the subsoil to groundwater. The goals of this study were to determine the distribution, diversity, and antimicrobial resistance of pathogenic Escherichia coli isolates from low flowing river water and sediment with inputs from different sources before water is discharged into ground water and to compare microbial contamination in water and sediment at different sampling sites.

View Article and Find Full Text PDF

Escherichia coli are widely used as indicators of fecal contamination, and in some cases to identify host sources of fecal contamination in surface water. Prevalence, genetic diversity and antimicrobial susceptibility were determined for 600 generic E. coli isolates obtained from surface water and sediment from creeks and channels along the middle Santa Ana River (MSAR) watershed of southern California, USA, after a 12 month study.

View Article and Find Full Text PDF

Antibiotics have saved millions of human lives, and their use has contributed significantly to improving human and animal health and well-being. Use of antibiotics in food-producing animals has resulted in healthier, more productive animals; lower disease incidence and reduced morbidity and mortality in humans and animals; and production of abundant quantities of nutritious, high-quality, and low-cost food for human consumption. In spite of these benefits, there is considerable concern from public health, food safety, and regulatory perspectives about the use of antimicrobials in food-producing animals.

View Article and Find Full Text PDF

An increasing number of people are consuming raw unpasteurized milk. Enhanced nutritional qualities, taste, and health benefits have all been advocated as reasons for increased interest in raw milk consumption. However, science-based data to substantiate these claims are limited.

View Article and Find Full Text PDF

Shiga toxin-producing Escherichia coli (STEC) serotypes including O157:H7 (n = 129) from dairy cows, cull dairy cow feces, cider, salami, human feces, ground beef, bulk tank milk, bovine feces, and lettuce; and O157:H7- (n = 24) isolated from bovine dairy and bovine feedlot cows were evaluated for antimicrobial resistance against 26 antimicrobials and the presence of antimicrobial resistance genes (tetA, tetB, tetC, tetD, tetE, tetG, floR, cmlA, strA, strB, sulI, sulII, and ampC). All E. coli exhibited resistance to five or more antimicrobial agents, and the majority of isolates carried one or more target antimicrobial resistance gene(s) in different combinations.

View Article and Find Full Text PDF

Antimicrobial resistance patterns and the prevalence of antimicrobial resistance genes and class 1 integrons in 35 Escherichia coli O26 isolated from humans and food-producing animals were evaluated. All isolates were resistant to cefaclor, cefalothin and sulfonamide and were susceptible to amikacin, gentamicin, cefmetazole, cefotaxime, ceftriaxone, ciprofloxacin, norfloxacin and trimethoprim. Most isolates were resistant to aztreonam, ampicillin, tetracycline, streptomycin and kanamycin.

View Article and Find Full Text PDF

In preliminary studies conducted to isolate thermophilic Campylobacter spp. from cull dairy cow fecal samples, growth of fungal strains on Abeyta-Hunt-Bark agar and charcoal cefoperazone desoxycholate agar (CCDA) interfered with isolation of target bacteria. Concentrations of antifungal substances in the agar media were not effective in suppressing growth of antibiotic resistant fungi.

View Article and Find Full Text PDF

Knowledge of physiologic/phenotypic and genetic variation of Escherichia coli O157 and its tight clonality was the basis for development of successful detection protocols for Shiga toxin-producing E. coli (STEC) O157:H7/H. Phenotypic and genetic characteristics of diarrheagenic E.

View Article and Find Full Text PDF

The goal of this study was to assess the prevalence of antimicrobial resistance and class 1 integrons, including integron-associated genes, in 24 Escherichia coli isolates from dairy farms. Escherichia coli isolates (n = 14) from dairy cows with mastitis (ECDM), Shiga toxin-producing (STEC) O157:H7 from cull dairy cow fecal samples (n = 9) and bulk tank milk (n = 1) were evaluated for sensitivity to 19 antimicrobial agents used commonly in human and/or veterinary medicine. Multiplex PCR was used to determine presence of genes associated with class 1 integrons (intI1, qacEDelta1, and sulI1).

View Article and Find Full Text PDF

The objective of this study was to characterize Escherichia coli isolates from dairy cows/feedlots, calves, mastitis, pigs, dogs, parrot, iguana, human disease, and food products for prevalence of Shiga toxin-producing E. coli (STEC) virulence markers. The rationale of the study was that, isolates of the same serotypes that were obtained from different sources and possessed the same marker profiles, could be cross-species transmissible.

View Article and Find Full Text PDF

The objectives of this study were to evaluate the use of various protocols for the isolation of Campylobacter jejuni from bulk tank milk and bovine fecal samples that were stored frozen for varying times, and to develop a rapid DNA-based protocol that distinguishes C. jejuni from other thermophilic Campylobacter spp. The pathogen was recovered from fecal samples that had been stored for 96-251 days at -20 degrees C with glycerol as the cryopreservative.

View Article and Find Full Text PDF

Phenotypic and genetic markers of Shiga toxin-producing Escherichia coli (STEC) O26 from North America were used to develop serotype-specific protocols for detection of this pathogen. Carbohydrate fermentation profiles and prevalence of gene sequences associated with STEC O26 (n = 20) were examined. Non-STEC O26 (n = 17), E.

View Article and Find Full Text PDF

The objective of this study was to develop and evaluate a SYBR Green 1 real-time PCR method for the specific detection of Salmonella spp. in dairy farm environmental samples. Previously reported 119-bp invA gene was selected for specificity, and 124 Salmonella spp.

View Article and Find Full Text PDF

This paper describes a novel single-tube agar-based technique for motility enhancement and immunoimmobilization of Escherichia coli O157:H7. Motility indole ornithine medium and agar (0.4%, wt/vol) media containing either nutrient broth, tryptone broth, or tryptic soy broth (TSBA) were evaluated for their abilities to enhance bacterial motility.

View Article and Find Full Text PDF

Fifty-five strains of Bacillus (53 B. laevolacticus and 2 B. racemilacticus ) and 31 strains of Sporolactobacillus (3 S.

View Article and Find Full Text PDF