Inflammation in response to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection drives severity of coronavirus disease 2019 (COVID-19) and is influenced by host genetics. To understand mechanisms of inflammation, animal models that reflect genetic diversity and clinical outcomes observed in humans are needed. We report a mouse panel comprising the genetically diverse Collaborative Cross (CC) founder strains crossed to human ACE2 transgenic mice (K18-hACE2) that confers susceptibility to SARS-CoV-2.
View Article and Find Full Text PDFOur recent data demonstrate a critical role of the RIG-I-like receptor family in regulating antifungal immunity against in a murine model. However, the importance of this pathway in humans and the cell types that use this innate immune receptor family to detect remain unresolved. In this study, using patients who underwent hematopoietic stem cell transplantation, we demonstrate that a polymorphism in human present in the donor genome was associated with the incidence of invasive pulmonary aspergillosis.
View Article and Find Full Text PDFMacrophage activation is essential for effective immunity to infection but can also contribute to disease through incompletely understood mechanisms. In this issue of Immunity, Simpson et al. reveal that death of activated macrophages integrates extrinsic and intrinsic pathways of apoptosis that contribute to damaging host responses.
View Article and Find Full Text PDFInflammation in response to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection drives severity of coronavirus disease 2019 (COVID-19) and is influenced by host genetics. To understand mechanisms of inflammation, animal models that reflect genetic diversity and clinical outcomes observed in humans are needed. We report a mouse panel comprising the genetically diverse Collaborative Cross (CC) founder strains crossed to human ACE2 transgenic mice (K18-hACE2) that confers susceptibility to SARS-CoV-2.
View Article and Find Full Text PDFIn addition to providing partial protection against pediatric tuberculosis, vaccination with bacille Calmette-Guérin (BCG) has been reported to confer nonspecific resistance to unrelated pulmonary pathogens, a phenomenon attributed to the induction of long-lasting alterations within the myeloid cell compartment. Here, we demonstrate that intravenous, but not subcutaneous, inoculation of BCG protects human-ACE2 transgenic mice against lethal challenge with SARS-CoV-2 (SCV2) and results in reduced viral loads in non-transgenic animals infected with an α variant. The observed increase in host resistance was associated with reductions in SCV2-induced tissue pathology, inflammatory cell recruitment, and cytokine production that multivariate analysis revealed as only partially related to diminished viral load.
View Article and Find Full Text PDFKyasanur Forest disease virus (KFDV) and the closely related Alkhurma hemorrhagic disease virus (AHFV) are emerging flaviviruses that cause severe viral hemorrhagic fevers in humans. Increasing geographical expansion and case numbers, particularly of KFDV in southwest India, class these viruses as a public health threat. Viral pathogenesis is not well understood and additional vaccines and antivirals are needed to effectively counter the impact of these viruses.
View Article and Find Full Text PDFDysregulated inflammation dominated by chemokine expression is a key feature of disease following infection with the globally important human pathogens Zika virus (ZIKV) and dengue virus, but a mechanistic understanding of how pro-inflammatory responses are initiated is lacking. Mitophagy is a quality-control mechanism that regulates innate immune signaling and cytokine production through selective degradation of damaged mitochondria. Here, we demonstrate that ZIKV nonstructural protein 5 (NS5) antagonizes mitophagy by binding to the host protein Ajuba and preventing its translocation to depolarized mitochondria where it is required for PINK1 activation and downstream signaling.
View Article and Find Full Text PDFEarly events in the host response to SARS-CoV-2 are thought to play a major role in determining disease severity. During pulmonary infection, the virus encounters both myeloid and epithelioid lineage cells that can either support or restrict pathogen replication as well as respond with host protective versus detrimental mediators. In addition to providing partial protection against pediatric tuberculosis, vaccination with bacille Calmette-Guérin (BCG) has been reported to confer non-specific resistance to unrelated pulmonary pathogens, a phenomenon attributed to the induction of long-lasting alterations within the myeloid cell compartment.
View Article and Find Full Text PDFZika virus (ZIKV) belongs to the family Flaviviridae, and is related to other viruses that cause human diseases. Unlike other flaviviruses, ZIKV infection can cause congenital neurological disorders and replicates efficiently in reproductive tissues. Here we show that the envelope protein (E) of ZIKV is polyubiquitinated by the E3 ubiquitin ligase TRIM7 through Lys63 (K63)-linked polyubiquitination.
View Article and Find Full Text PDFFlaviviruses are controlled by adaptive immune responses but are exquisitely sensitive to interferon-stimulated genes (ISGs). How coinfections, particularly simian immunodeficiency viruses (SIVs), that induce robust ISG signatures influence flavivirus clearance and pathogenesis is unclear. Here, we studied how Zika virus (ZIKV) infection is modulated in SIV-infected nonhuman primates.
View Article and Find Full Text PDFTripartite motif-containing protein 5α (TRIM5α) is a cellular antiviral restriction factor that prevents early events in retrovirus replication. The activity of TRIM5α is thought to be limited to retroviruses as a result of highly specific interactions with capsid lattices. In contrast to this current understanding, we show that both human and rhesus macaque TRIM5α suppress replication of specific flaviviruses.
View Article and Find Full Text PDFCrimean-Congo hemorrhagic fever (CCHF) is an acute, often fatal viral disease characterized by rapid onset of febrile symptoms followed by hemorrhagic manifestations. The etiologic agent, CCHF orthonairovirus (CCHFV), can infect several mammals in nature but only seems to cause clinical disease in humans. Over the past two decades there has been an increase in total number of CCHF case reports, including imported CCHF patients, and an expansion of CCHF endemic areas.
View Article and Find Full Text PDFChikungunya virus (CHIKV) is a mosquito-borne alphavirus that has evolved effective mechanisms to counteract the type I interferon (IFN) response. Upon recognition of the virus, cells secrete IFNs, which signal through transmembrane receptors (IFNAR) to phosphorylate STAT proteins (pSTAT). pSTAT dimers are transported into the nucleus by importin-α5 and activate the transcription of IFN-stimulated genes (ISGs), increasing cellular resistance to infection.
View Article and Find Full Text PDFProgress toward understanding Zika virus (ZIKV) pathogenesis is hindered by lack of immunocompetent small animal models, in part because ZIKV fails to effectively antagonize Stat2-dependent interferon (IFN) responses in mice. To address this limitation, we first passaged an African ZIKV strain (ZIKV-Dak-41525) through Rag1 mice to obtain a mouse-adapted virus (ZIKV-Dak-MA) that was more virulent than ZIKV-Dak-41525 in mice treated with an anti-Ifnar1 antibody. A G18R substitution in NS4B was the genetic basis for the increased replication, and resulted in decreased IFN-β production, diminished IFN-stimulated gene expression, and the greater brain infection observed with ZIKV-Dak-MA.
View Article and Find Full Text PDFInflammatory monocyte (iMO) recruitment to the brain is a hallmark of many neurologic diseases. Prior to entering the brain, iMOs must egress into the blood from the bone marrow through a mechanism, which for known encephalitic viruses, is CCR2 dependent. In this article, we show that during La Crosse Virus-induced encephalitis, egress of iMOs was surprisingly independent of CCR2, with similar percentages of iMOs in the blood and brain of heterozygous and CCR2 mice following infection.
View Article and Find Full Text PDFThe cellular tropism of noroviruses in immune-competent hosts remains enigmatic. In recent studies in Cell Host & Microbe and Immunity, Lee et al. (2017) and Tomov et al.
View Article and Find Full Text PDFPublished data show that murine bone marrow-derived macrophages (BMDM) restrict growth of avirulent phase II, but not virulent phase I, Coxiella burnetii. Growth restriction of phase II bacteria is thought to result from potentiated recognition of pathogen-associated molecular patterns, which leads to production of inhibitory effector molecules. Past studies have used conditioned medium from L-929 murine fibroblasts as a source of macrophage-colony stimulating factor (M-CSF) to promote differentiation of bone marrow-derived myeloid precursors into macrophages.
View Article and Find Full Text PDFTwo of the most important contemporary emerging viruses that affect human health in Africa are Ebola virus (EBOV) and Lassa virus (LASV). The 2013-2016 West African outbreak of EBOV was responsible for more than 11,000 deaths, primarily in Guinea, Sierra Leone and Liberia. LASV is constantly emerging in these and surrounding West African countries, with an estimate of more than 500,000 cases of Lassa fever, and approximately 5,000 deaths, annually.
View Article and Find Full Text PDFSelective autophagy of the endoplasmic reticulum (termed ER-phagy) is controlled by members of the FAM134 reticulon protein family. Here we used mouse embryonic fibroblasts from mice deficient in FAM134B to examine the role of the ER in replication of historic (Mayinga) or contemporary (Makona GCO7) strains of Ebola virus (EBOV). Loss of FAM134B resulted in 1-2 log higher production of infectious EBOV, which was associated with increased production of viral proteins GP and VP40 and greater accumulation of nucleocaspid lattices.
View Article and Find Full Text PDFThe latest Ebola virus (EBOV) epidemic spread rapidly through Guinea, Sierra Leone, and Liberia, creating a global public health crisis and accelerating the assessment of experimental therapeutics and vaccines in clinical trials. One of those vaccines is based on recombinant vesicular stomatitis virus expressing the EBOV glycoprotein (VSV-EBOV), a live-attenuated vector with marked preclinical efficacy. Here, we provide the preclinical proof that VSV-EBOV completely protects macaques against lethal challenge with the West African EBOV-Makona strain.
View Article and Find Full Text PDFType I interferon (IFN-α/β or IFN-I) signals through two receptor subunits, IFNAR1 and IFNAR2, to orchestrate sterile and infectious immunity. Cellular pathways that regulate IFNAR1 are often targeted by viruses to suppress the antiviral effects of IFN-I. Here we report that encephalitic flaviviruses, including tick-borne encephalitis virus and West Nile virus, antagonize IFN-I signaling by inhibiting IFNAR1 surface expression.
View Article and Find Full Text PDFUnlabelled: Middle East respiratory syndrome coronavirus (MERS-CoV) emerged in 2012. Recently, the MERS-CoV receptor dipeptidyl peptidase 4 (DPP4) was identified and the specific interaction of the receptor-binding domain (RBD) of MERS-CoV spike protein and DPP4 was determined by crystallography. Animal studies identified rhesus macaques but not hamsters, ferrets, or mice to be susceptible for MERS-CoV.
View Article and Find Full Text PDFTick-borne encephalitis virus (TBEV), a member of the Flaviviridae family, is a leading cause of viral encephalitis in Europe and Asia. Dendritic cells (DCs), as early cellular targets of infection, provide an opportunity for flaviviruses to inhibit innate and adaptive immune responses. Flaviviruses modulate DC function, but the mechanisms underpinning this are not defined.
View Article and Find Full Text PDF