For use in regenerative medicine, large-scale manufacturing of human pluripotent stem cells (hPSCs) under current good manufacturing practice (cGMPs) is required. Much progress has been made since culturing under static two-dimensional (2D) conditions on feeders, including feeder-free cultures, conditioned and xeno-free media, and three-dimensional (3D) dynamic suspension expansion. With the advent of horizontal-blade and vertical-wheel bioreactors, scale-out for large-scale production of differentiated hPSCs became possible; control of aggregate size, shear stress, fluid hydrodynamics, batch-feeding strategies, and other process parameters became a reality.
View Article and Find Full Text PDFThe Hadassah hESC Research Center's aim is to be a supplier of clinical and research-grade human embryonic stem cell (hESC) lines. In 2012, we derived the first three entirely GMP-compliant and xeno-free, fully-characterised, feeder-dependent (human umbilical cord) hESC lines developed under cleanroom conditions. In 2018, we established four new GMP and xeno-free, feeder-independent MCB hESCs under GMP conditions using commercially available reagents, media and matrix.
View Article and Find Full Text PDFClinically compliant human embryonic stem cells (hESCs) should be developed in adherence to ethical standards, without risk of contamination by adventitious agents. Here we developed for the first time animal-component free and good manufacturing practice (GMP)-compliant hESCs. After vendor and raw material qualification, we derived xeno-free, GMP-grade feeders from umbilical cord tissue, and utilized them within a novel, xeno-free hESC culture system.
View Article and Find Full Text PDF