Heat shock protein 70 (Hsp70) plays a major role in protein folding and has emerged as an attractive target in a wide range of cancers. Here we used a polymer nanogel to deliver two hydrophilic peptide inhibitors that block the interaction between the C-terminus of Hsp70 and heat shock organizing protein (HOP). The nanogels are able to load ∼200 wt% of the peptide inhibitors from solution via simple agitation at pH 7, and release them after cell uptake.
View Article and Find Full Text PDFWe report the first small molecule peptides based on the N-terminal sequence of heat shock protein 27 (Hsp27, gene HSPB1) that demonstrates chaperone-like activity. The peptide, comprising the SWDPF sequence located at Hsp27's amino (N)-terminal domain, directly regulates protein aggregation events, maintaining the disaggregated state of the model protein, citrate synthase. While traditional inhibitors of protein aggregation act via regulation of a protein that facilitates aggregation or disaggregation, our molecules are the first small peptides between 5 and 8 amino acids in length that are based on the N-terminus of Hsp27 and directly control protein aggregation.
View Article and Find Full Text PDFWe present the first NMR study of the interaction between heat shock protein 90 (Hsp90) and amino (N)-terminal inhibitors 17-AAG, and AUY922, and carboxy (C)-terminal modulators SM253, and LB51. We show that the two ATP mimics, 17-AAG and AUY922, bind deeply within the ATP binding pocket of the N-terminal domain, consistent with the crystal structures. In contrast, SM253, a C-terminal Hsp90 modulator, binds to the linker region between the N and middle domains.
View Article and Find Full Text PDFDeveloping macrocyclic peptides that can reach intracellular targets is a significant challenge. This review discusses the most recent strategies used to develop cell permeable cyclic peptides that maintain binding to their biological target inside the cell. Macrocyclic peptides are unique from small molecules because traditional calculated physical properties are unsuccessful for predicting cell membrane permeability.
View Article and Find Full Text PDFBackground/aims: Hypoxia Inducible Factor-1α (HIF-1α) is involved in cancer progression and is stabilized by the chaperone HSP90 (Heat Shock Protein 90), preventing degradation. Previously identified HSP90 inhibitors bind to the N-terminal pocket of HSP90, which blocks binding to HIF-1α and induces HIF-1α degradation. N-terminal inhibitors have failed in the clinic as single therapy treatments partially because they induce a heat shock response.
View Article and Find Full Text PDFLB76 is a cyclic peptide that shows great promise as a selective heat shock protein 90 (Hsp90) inhibitor. However despite strong binding to and inhibition of Hsp90 in cell lysate its polar structure prevents it from crossing the cell membrane. We have developed a pH responsive polymer nanoparticle that effectively encapsulates LB76 from solution without need for purification.
View Article and Find Full Text PDFSemiconductor nanocrystals or quantum dots (QDs) have unique optical and physical properties that make them potential imaging tools in biological and medical applications. However, concerns over the aqueous dispersivity, toxicity to cells, and stability in biological environments may limit the use of QDs in such applications. Here, we report an investigation into the cytotoxicity of aqueously dispersed CdSe(S) and CdSe(S)/ZnO core/shell QDs in the presence of human colorectal carcinoma cells (HCT-116) and a human skin fibroblast cell line (WS1).
View Article and Find Full Text PDFJ Enzyme Inhib Med Chem
December 2019
The most challenging issue facing peptide drug development is producing a molecule with optimal physical properties while maintaining target binding affinity. Masking peptides with protecting groups that can be removed inside the cell, produces a cell-permeable peptide, which theoretically can maintain its biological activity. Described are series of prodrugs masked using: (a) O-alkyl, (b) N-alkyl, and (c) acetyl groups, and their binding affinity for Hsp90.
View Article and Find Full Text PDFProtein-protein interactions control all cellular functions. Presented is the first de novo designed protein-protein inhibitor that targets the C-terminus of heat shock protein 90 (Hsp90) and blocks co-chaperones from binding. Compound LB76, which was created from an Hsp90 co-chaperone, selectively pulls down Hsp90 from cell lysates, binds to Hsp90's C-terminal domain, and blocks the interactions between Hsp90 and TPR-containing co-chaperones.
View Article and Find Full Text PDFHerein, we describe the synthesis and structure-activity relationships of cyclic peptides designed to target heat shock protein 90 (Hsp90). Generating 19 compounds and evaluating their binding affinity reveals that increasing electrostatic interactions allows the compounds to bind more effectively with Hsp90 compared to the lead structure. Exchanging specific residues for lysine improves binding affinity for Hsp90, indicating some residues are not critical for interacting with the target, whereas others are essential.
View Article and Find Full Text PDFProtein-protein interactions (PPIs) regulate all signaling pathways for cellular function. Developing molecules that modulate PPIs through the interface of their protein surfaces has been a significant challenge and there has been little success controlling PPIs through standard molecular library screening approaches. PPIs control the cell's protein-folding machinery, and this machinery relies on a multiprotein complex formed with heat shock protein 70 (Hsp70).
View Article and Find Full Text PDFHsp90 is an essential chaperone that guards proteome integrity and amounts to 2% of cellular protein. We now find that Hsp90 also has the ability to directly interact with and deform membranes via an evolutionarily conserved amphipathic helix. Using a new cell-free system and in vivo measurements, we show this amphipathic helix allows exosome release by promoting the fusion of multivesicular bodies (MVBs) with the plasma membrane.
View Article and Find Full Text PDFThe design, synthesis, and cell permeability of 19 hydrophilic macrocyclic peptides is presented. By systematically analyzing the impact of three different approaches (alkylated amino acids, asparagines, and d-amino acids) on the permeability of polar peptides, a well-defined strategy for optimizing cell permeability is provided. These three new methods can be used individually or in combination to effectively convert polar peptides into cell permeable molecules, and the results can be applied to the rapidly expanding peptide therapeutic industry.
View Article and Find Full Text PDFThe established cytotoxic agent RITA contains a thiophene-furan-thiophene backbone and two terminal alcohol groups. Herein we investigate the effect of using thiazoles as the backbone in RITA-like molecules and modifying the terminal groups of these trithiazoles, thereby generating 41 unique structures. Incorporating side chains with varied steric bulk allowed us to investigate how size and a stereocenter impacted biological activity.
View Article and Find Full Text PDFSelectively inhibiting target proteins in cancer cells over normal cells is one of the most critical features of a successful protein inhibitor for clinical applications. By evaluating and comparing the impact of a clinical N-terminal heat shock protein 90 (Hsp90) inhibitor, AUY922 (luminespib), on Hsp90 inhibition-associated cellular events in cancer cells versus normal cells, we found that it produces similar phenotype characteristics in both cell types, indicating that AUY922 is not selective for targeting Hsp90 in tumor cells. By comparison, the C-terminal Hsp90 modulator SM258 suppresses cell proliferation, triggers apoptosis, regulates the expression of Hsp90-associated heat shock proteins, and enhances the degradation of Hsp90's client proteins preferentially in cancer cells over normal cells.
View Article and Find Full Text PDFThe phenotypes produced when cells are treated with the heat shock protein 90 (Hsp90) inhibitors AUY922 or 17-AAG (classical inhibitors) are different to those produced when cells are knocked down with Hsp90α. Pull-down assays using classical inhibitors suggest that these molecules bind to multiple targets other than Hsp90. Classical inhibitors also induce similar protein markers as other anti-cancer therapies cisplatin and bortezomib that do not target Hsp90.
View Article and Find Full Text PDFHeat shock protein 90 (Hsp90) is a molecular chaperone (90 kDa) that functions as a dimer. This protein facilitates the folding, assembly, and stabilization of more than 400 proteins that are responsible for cancer development and progression. Inhibiting Hsp90's function will shut down multiple cancer-driven pathways simultaneously because oncogenic clients rely heavily on Hsp90, which makes this chaperone a promising anticancer target.
View Article and Find Full Text PDFBackground: While there is compelling rationale to use heat shock protein 90 (Hsp90) inhibitors for treatment of advanced prostate cancer, agents that target the N-terminal ATP-binding site of Hsp90 have shown little clinical benefit. These N-terminal binding agents induce a heat shock response that activates compensatory heat shock proteins, which is believed to contribute in part to the agents' lack of efficacy. Here, we describe the functional characterization of two novel agents, SM253 and SM258, that bind the N-middle linker region of Hsp90, resulting in reduced client protein activation and preventing C-terminal co-chaperones and client proteins from binding to Hsp90.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
July 2016
Highly luminescent quantum dots (QDs) that emit in the visible spectrum are of interest to a number of imaging technologies, not least that of biological samples. One issue that hinders the application of luminescent markers in biology is the potential toxicity of the fluorophore. Here we show that hydrothermally synthesized ZnSe(S) QDs have low cytotoxicity to both human colorectal carcinoma cells (HCT-116) and human skin fibroblast cells (WS1).
View Article and Find Full Text PDFMacrocycles have several advantages over small-molecule drugs when it comes to addressing specific protein-protein interactions as therapeutic targets. Herein we report the synthesis of seven new cyclic peptide molecules and their biological activity. These macrocycles were designed to understand how moving an N-methyl moiety around the peptide backbone impacts biological activity.
View Article and Find Full Text PDFThe first total synthesis of marthiapeptide A is reported. Two synthetic procedures are described: the first, which was unsuccessful, attempts to close the ring at position I, and the second, which was successful, closes the ring at position II. It appears that the first route was unsuccessful because it required cyclization next to the rigid thiazole moiety, whereas the second route closed next to the more flexible thiazoline ring.
View Article and Find Full Text PDFBioorg Med Chem Lett
September 2015
Described is the role that heat shock factor 1 (HSF1) plays in regulating cellular stress. Focusing on the current state of the HSF1 field in chemotherapeutics we outline the cytoprotective role of HSF1 in the cell. Summarizing the mechanism by which HSF1 regulates the unfolded proteins that are generated under stress conditions provides the background on why HSF1, the master regulator, is such an important protein in cancer cell growth.
View Article and Find Full Text PDFThe nuclear factor κB (NF-κB) pathway is a master regulator of inflammatory processes and is implicated in insulin resistance and pancreatic β cell dysfunction in the metabolic syndrome. Whereas canonical NF-κB signaling is well studied, there is little information on the divergent noncanonical NF-κB pathway in the context of pancreatic islet dysfunction. Here, we demonstrate that pharmacological activation of the noncanonical NF-κB-inducing kinase (NIK) disrupts glucose homeostasis in zebrafish in vivo.
View Article and Find Full Text PDFHeterocycle-containing macrocycles are an emerging class of molecules that have therapeutic efficacy. Many biologically active natural products that have interesting biological properties fall into this class of molecules. The highly specific and selective biological activity is often attributed to the unique conformation of these macrocycles, which is affected by the elements of the macrocycles as well as its surroundings in biological systems.
View Article and Find Full Text PDFGlucocorticoids form a critical component of chemotherapy regimens for pediatric acute lymphoblastic leukemia (ALL) and the initial response to glucocorticoid therapy is a major prognostic factor, where resistance is predictive of poor outcome. A high-throughput screen identified four thioimidazoline-containing compounds that reversed dexamethasone resistance in an ALL xenograft derived from a chemoresistant pediatric ALL. The lead compound (1) was synergistic when used in combination with the glucocorticoids, dexamethasone or prednisolone.
View Article and Find Full Text PDF