Mosquito vectors of eastern equine encephalitis virus (EEEV) and West Nile virus (WNV) in the USA reside within broad multi-species assemblages that vary in spatial and temporal composition, relative abundances and vector competence. These variations impact the risk of pathogen transmission and the operational management of these species by local public health vector control districts. However, most models of mosquito vector dynamics focus on single species and do not account for co-occurrence probabilities between mosquito species pairs across environmental gradients.
View Article and Find Full Text PDFThe time it takes for malaria parasites to develop within a mosquito, and become transmissible, is known as the extrinsic incubation period, or EIP. EIP is a key parameter influencing transmission intensity as it combines with mosquito mortality rate and competence to determine the number of mosquitoes that ultimately become infectious. In spite of its epidemiological significance, data on EIP are scant.
View Article and Find Full Text PDFMalaria transmission is known to be strongly impacted by temperature. The current understanding of how temperature affects mosquito and parasite life history traits derives from a limited number of empirical studies. These studies, some dating back to the early part of last century, are often poorly controlled, have limited replication, explore a narrow range of temperatures, and use a mixture of parasite and mosquito species.
View Article and Find Full Text PDFLong-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS) have contributed substantially to reductions in the burden of malaria in the past 15 years. Building on this foundation, the goal is now to drive malaria towards elimination. Vector control remains central to this goal, but there are limitations to what is achievable with the current tools.
View Article and Find Full Text PDF