Publications by authors named "Shelley S Martin"

Terrestrial ecosystems and human societies depend on oxygenic photosynthesis, which began to reshape our atmosphere approximately 2.5 billion years ago. The earliest known organisms carrying out oxygenic photosynthesis are the cyanobacteria, which use large complexes of phycobiliproteins as light-harvesting antennae.

View Article and Find Full Text PDF

Photoreceptors in the phytochrome superfamily use 15,16-photoisomerization of a linear tetrapyrrole (bilin) chromophore to photoconvert between two states with distinct spectral and biochemical properties. Canonical phytochromes include master regulators of plant growth and development in which light signals trigger interconversion between a red-absorbing 15Z dark-adapted state and a metastable, far-red-absorbing 15E photoproduct state. Distantly related cyanobacteriochromes (CBCRs) carry out a diverse range of photoregulatory functions in cyanobacteria and exhibit considerable spectral diversity.

View Article and Find Full Text PDF

Biosyntheses of chlorophyll and heme in oxygenic phototrophs share a common trunk pathway that diverges with insertion of magnesium or iron into the last common intermediate, protoporphyrin IX. Since both tetrapyrroles are pro-oxidants, it is essential that their metabolism is tightly regulated. Here, we establish that heme-derived linear tetrapyrroles (bilins) function to stimulate the enzymatic activity of magnesium chelatase (MgCh) via their interaction with GENOMES UNCOUPLED 4 (GUN4) in the model green alga A key tetrapyrrole-binding component of MgCh found in all oxygenic photosynthetic species, GUN4, also stabilizes the bilin-dependent accumulation of protoporphyrin IX-binding CHLH1 subunit of MgCh in light-grown cells by preventing its photooxidative inactivation.

View Article and Find Full Text PDF

Cyanobacteriochromes (CBCRs) are small, linear tetrapyrrole (bilin)-binding photoreceptors in the phytochrome superfamily that regulate diverse light-mediated adaptive processes in cyanobacteria. More spectrally diverse than canonical red/far-red-sensing phytochromes, CBCRs were thought to be restricted to sensing visible and near UV light until recently when several subfamilies with far-red-sensing representatives (frCBCRs) were discovered. Two of these frCBCRs subfamilies have been shown to incorporate bilin precursors with larger pi-conjugated chromophores, while the third frCBCR subfamily uses the same phycocyanobilin precursor found in the bulk of the known CBCRs.

View Article and Find Full Text PDF

Cyanobacteriochromes (CBCRs) are cyanobacterial photoreceptors that exhibit photochromism between two states: a thermally stable dark-adapted state and a metastable light-adapted state with bound linear tetrapyrrole (bilin) chromophores possessing 15 and 15 configurations, respectively. The photodynamics of canonical red/green CBCRs have been extensively studied; however, the time scales of their excited-state lifetimes and subsequent ground-state evolution rates widely differ and, at present, remain difficult to predict. Here, we compare the photodynamics of two closely related red/green CBCRs that have substantial sequence identity (∼68%) and similar chromophore environments: AnPixJg2 from sp.

View Article and Find Full Text PDF

In this report, we compare the femtosecond to nanosecond primary reverse photodynamics (P → P) of eight tetrapyrrole binding photoswitching cyanobacteriochromes in the canonical red/green family from the cyanobacterium . Three characteristic classes were identified on the basis of the diversity of excited-state and ground-state properties, including the lifetime, photocycle initiation quantum yield, photointermediate stability, spectra, and temporal properties. We observed a correlation between the excited-state lifetime and peak wavelength of the electronic absorption spectrum with higher-energy-absorbing representatives exhibiting both faster excited-state decay times and higher photoisomerization quantum yields.

View Article and Find Full Text PDF

Cyanobacteriochromes (CBCRs) are photosensitive proteins that are distantly related to the phytochrome family of photoreceptors and, like phytochromes, exhibit photoactivity initiated by the excited-state photoisomerization of a covalently bound bilin chromophore. The canonical red/green photoswitching sub-family is the most studied class of CBCRs studied to date. Recently, a comparative study of the ultrafast (100 fs-10 ns) forward photodynamics of nine red/green photoswitching CBCR domains isolated from Nostoc punctiforme were reported (S.

View Article and Find Full Text PDF

Cyanobacteriochromes (CBCRs) make up a diverse family of cyanobacterial photoreceptors distantly related to the phytochrome photoreceptors of land plants. At least two lineages of CBCRs have reacquired red-absorbing dark states similar to the phytochrome P resting state but are coupled to green-absorbing light-adapted states rather than the canonical far-red-absorbing light-adapted state. One such lineage includes the canonical red/green (R/G) CBCRs that includes AnPixJg2 (UniProtKB Q8YXY7 ) and NpR6012g4 (UniProtKB B2IU14 ) that have been extensively characterized.

View Article and Find Full Text PDF

Phytochrome proteins utilize ultrafast photoisomerization of a linear tetrapyrrole chromophore to detect the ratio of red to far-red light. Femtosecond photodynamics in the PAS-GAF-PHY photosensory core of the Cph1 phytochrome from Synechocystis sp. PCC6803 (Cph1Δ) were resolved with a dual-excitation-wavelength-interleaved pump-probe (DEWI) approach with two excitation wavelengths (600 and 660 nm) at three pH values (6.

View Article and Find Full Text PDF

Forward and reverse primary (<10 ns) and secondary (>10 ns) photodynamics of cyanobacteriochrome (CBCR) NpF2164g7 were characterized by global analysis of ultrafast broadband transient absorption measurements. NpF2164g7 is the most C-terminal bilin-binding GAF domain in the Nostoc punctiforme phototaxis sensor PtxD (locus Npun_F2164). Although a member of the canonical red/green CBCR subfamily phylogenetically, NpF2164g7 exhibits an orange-absorbing P dark-adapted state instead of the typical red-absorbing P dark-adapted state characteristic of this subfamily.

View Article and Find Full Text PDF

Phytochrome photoreceptors control plant growth, development, and the shade avoidance response that limits crop yield in high-density agricultural plantings. Cyanobacteriochromes (CBCRs) are distantly related photosensory proteins that control cyanobacterial metabolism and behavior in response to light. Photoreceptors in both families reversibly photoconvert between two photostates via photoisomerization of linear tetrapyrrole (bilin) chromophores.

View Article and Find Full Text PDF

Class III adenylyl cyclases generate the ubiquitous second messenger cAMP from ATP often in response to environmental or cellular cues. During evolution, soluble adenylyl cyclase catalytic domains have been repeatedly juxtaposed with signal-input domains to place cAMP synthesis under the control of a wide variety of these environmental and endogenous signals. Adenylyl cyclases with light-sensing domains have proliferated in photosynthetic species depending on light as an energy source, yet are also widespread in nonphotosynthetic species.

View Article and Find Full Text PDF

Land plant phytochromes perceive red and far-red light to control growth and development, using the linear tetrapyrrole (bilin) chromophore phytochromobilin (PΦB). Phytochromes from streptophyte algae, sister species to land plants, instead use phycocyanobilin (PCB). PCB and PΦB are synthesized by different ferredoxin-dependent bilin reductases (FDBRs): PΦB is synthesized by HY2, whereas PCB is synthesized by PcyA.

View Article and Find Full Text PDF

Cyanobacteriochromes (CBCRs) are cyanobacterial photoreceptors distantly related to phytochromes. Both families use linear tetrapyrrole (bilin) chromophores that are covalently attached to a conserved Cys residue. CBCRs are more spectrally diverse than phytochromes, with known examples detecting light from the near ultraviolet to the edge of the infrared (370-750 nm).

View Article and Find Full Text PDF

Cyanobacteriochromes (CBCRs) are cyanobacterial photoreceptors that sense near-ultraviolet to far-red light. Like the distantly related phytochromes, all CBCRs reported to date have a conserved Cys residue (the "canonical Cys" or "first Cys") that forms a thioether linkage to C3 of the linear tetrapyrrole (bilin) chromophore. Detection of ultraviolet, violet, and blue light is performed by at least three subfamilies of two-Cys CBCRs that require both the first Cys and a second Cys that forms a second covalent linkage to C10 of the bilin.

View Article and Find Full Text PDF

The opacity of mammalian tissue to visible light and the strong attenuation of infrared light by water at ≥900 nm have contributed to growing interest in the development of far-red and near-infrared absorbing tools for visualizing and actuating responses within live cells. Here we report the discovery of cyanobacteriochromes (CBCRs) responsive to light in this far-red window. CBCRs are linear tetrapyrrole (bilin)-based light sensors distantly related to plant phytochrome sensors.

View Article and Find Full Text PDF

Cyanobacteriochromes (CBCRs) are cyanobacterial photosensory proteins with a tetrapyrrole (bilin) chromophore that belong to the phytochrome superfamily. Like phytochromes, CBCRs photoconvert between two photostates with distinct spectral properties. NpR6012g4 from Nostoc punctiforme is a model system for widespread CBCRs with conserved red/green photocycles.

View Article and Find Full Text PDF

Cyanobacteriochrome (CBCR) photosensory proteins are phytochrome homologs using bilin chromophores for light sensing across the visible spectrum. NpR6012g4 is a CBCR from Nostoc punctiforme that serves as a model for a widespread CBCR subfamily with red/green photocycles. We report NMR chemical shift assignments for both the protein backbone and side-chain resonances of the red-absorbing dark state of NpR6012g4 (BMRB no.

View Article and Find Full Text PDF

Circuit mapping requires knowledge of both structural and functional connectivity between cells. Although optical tools have been made to assess either the morphology and projections of neurons or their activity and functional connections, few probes integrate this information. We have generated a family of photoactivatable genetically encoded Ca(2+) indicators that combines attributes of high-contrast photolabeling with high-sensitivity Ca(2+) detection in a single-color protein sensor.

View Article and Find Full Text PDF

Cyanobacteriochromes (CBCRs) are cyanobacterial photosensory proteins distantly related to phytochromes. Like phytochromes, CBCRs reversibly photoconvert between a dark-stable state and a photoproduct via photoisomerization of the 15,16-double bond of their linear tetrapyrrole (bilin) chromophores. CBCRs provide cyanobacteria with complete coverage of the visible spectrum and near-ultraviolet region.

View Article and Find Full Text PDF

Cyanobacteriochromes (CBCRs) are cyanobacterial photoreceptors distantly related to phytochromes. Both CBCRs and phytochromes use photoisomerization of a linear tetrapyrrole (bilin) chromophore to photoconvert between two states with distinct spectral and biochemical properties, the dark state and the photoproduct. The isolated CBCR domain NpR6012g4 from Nostoc punctiforme is a well-characterized member of the canonical red/green CBCR subfamily, photosensory domains that can function as sensors for light color or intensity to regulate phototactic responses of filamentous cyanobacteria.

View Article and Find Full Text PDF

Diverse organisms use phytochrome photoreceptors to measure the ratio of red to far-red light in their respective environments. In addition to red/far-red phytochromes, many cyanobacteria contain distantly related cyanobacteriochrome (CBCR) photosensors that also use photoisomerization of a covalently bound linear tetrapyrrole (bilin) chromophore to measure multiple colors of light. CBCRs exhibit a remarkable variety of photocycles spanning the near ultraviolet and the entire visible spectrum.

View Article and Find Full Text PDF

Phytochromes are red/far-red photosensory proteins that detect the ratio of red to far-red light. Crucial to light regulation of plant developmental biology, phytochromes are also found in fungi, bacteria, and eukaryotic algae. In addition to phytochromes, cyanobacteria also can contain distantly related cyanobacteriochromes (CBCRs) that, like phytochromes, utilize the photoisomerization of a linear tetrapyrrole (bilin) chromophore to convert between two photostates with distinct spectral properties.

View Article and Find Full Text PDF