Publications by authors named "Shelley Jackson"

Rationale: The opioid crisis persists despite availability of effective opioid agonist maintenance treatments (methadone and buprenorphine). Thus, there is a need to advance novel medications for the treatment of opioid use and relapse.

Objectives: We recently modeled maintenance treatment in rats and found that chronic delivery of buprenorphine and the mu opioid receptor (MOR) partial agonist TRV130 decreases relapse to oxycodone seeking and taking.

View Article and Find Full Text PDF
Article Synopsis
  • The study examines the role of the ghrelin receptor (GHSR) in feeding behaviors and diet-induced obesity (DIO) by comparing global GHSR-KO and wild-type (WT) rats on high-fat and regular diets over 12 months.
  • Findings reveal that GHSR gene deletion protects male rats from DIO, decreases their food intake on high-fat diets, and enhances thermogenesis and brain glucose uptake, while these effects were not observed in female rats.
  • The use of a GHSR inverse agonist reduced food intake induced by ghrelin in males and lower binge-eating in both sexes, indicating GHSR as a potential target for obesity treatments.
View Article and Find Full Text PDF
Article Synopsis
  • - The study explores how the ghrelin receptor (GHSR) influences feeding behaviors and diet-induced obesity (DIO) through research on gene deletion in male and female rats over a year on a high-fat diet (HFD).
  • - Findings indicate that deleting the GHSR gene protects male rats from DIO and decreases their food intake, while having different effects for females.
  • - The research also reveals that GHSR deletion enhances energy burning and alters brain glucose metabolism in males, suggesting GHSR could be a key target for obesity treatments.
View Article and Find Full Text PDF

Breast cancer brain metastasis (BCBM) has an incidence of 10-30%. It is incurable and the biological mechanisms that promote its progression remain largely undefined. Consequently, to gain insights into BCBM processes, we have developed a spontaneous mouse model of BCBM and in this study found a 20% penetrance of macro-metastatic brain lesion formation.

View Article and Find Full Text PDF

Dietary lipids, particularly omega-3 polyunsaturated fatty acids, are speculated to impact behaviors linked to the dopaminergic system, such as movement and control of circadian rhythms. However, the ability to draw a direct link between dopaminergic omega-3 fatty acid metabolism and behavioral outcomes has been limited to the use of diet-based approaches, which are confounded by systemic effects. Here, neuronal lipid metabolism was targeted in a diet-independent manner by manipulation of long-chain acyl-CoA synthetase 6 (ACSL6) expression.

View Article and Find Full Text PDF

The endoplasmic reticulum (ER) is an organelle that performs several key functions such as protein synthesis and folding, lipid metabolism and calcium homeostasis. When these functions are disrupted, such as upon protein misfolding, ER stress occurs. ER stress can trigger adaptive responses to restore proper functioning such as activation of the unfolded protein response (UPR).

View Article and Find Full Text PDF

We describe an innovative use for the recently reported fast lipid analysis technique (FLAT) that allows for the generation of MALDI tandem mass spectrometry data suitable for lipid A structure analysis directly from a single Gram-negative bacterial colony. We refer to this tandem MS version of FLAT as FLAT. Neither technique requires sophisticated sample preparation beyond the selection of a single bacterial colony, which significantly reduces overall analysis time (∼1 h), as compared to conventional methods.

View Article and Find Full Text PDF

Background: Ghrelin may influence several alcohol-related behaviors in animals and humans by modulating central and/or peripheral biological pathways. The aim of this exploratory analysis was to investigate associations between ghrelin administration and the human circulating metabolome during alcohol exposure in nontreatment seeking, heavy drinking individuals with alcohol use disorder (AUD).

Methods: We used serum samples from a randomized, crossover, double-blind, placebo-controlled human laboratory study with intravenous (IV) ghrelin or placebo infusion in two experiments.

View Article and Find Full Text PDF

The omega-3 fatty acid docosahexaenoic acid (DHA) inversely relates to neurological impairments with aging; however, limited nondietary models manipulating brain DHA have hindered a direct linkage. We discovered that loss of long-chain acyl-CoA synthetase 6 in mice (Acsl6-/-) depletes brain membrane phospholipid DHA levels, independent of diet. Here, Acsl6-/- brains contained lower DHA compared with controls across the life span.

View Article and Find Full Text PDF

Although opioids are potent analgesics, a consequence of chronic opioid use is hyperalgesia during withdrawal, which may contribute to opioid misuse. Dynorphin, the endogenous ligand of κ-opioid receptors (KORs), is upregulated in opioid-dependent rats and in animal models of chronic pain. However, the role of KORs in opioid withdrawal-induced hyperalgesia remains to be determined.

View Article and Find Full Text PDF

Cardiolipins (CLs) are an important, regulated lipid class both in prokaryotic and eukaryotic cells, yet they remain largely unexplored by matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) in tissues. To date, no in-depth optimization studies of label-free visualization of CLs in complex biological samples have been reported. Here we report a streamlined modification to our previously reported MALDI-MSI method for detection of endogenous CLs in prokaryotic and eukaryotic cells based on preparation with norharmane (NRM) matrix.

View Article and Find Full Text PDF

We developed a method to directly detect and map the Gram-negative bacterial virulence factor lipid A derived from lipopolysaccharide (LPS) by coupling acid hydrolysis with matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI). As the structure of lipid A (endotoxin) determines the innate immune outcome during infection, the ability to map its location within an infected organ or animal is needed to understand localized inflammatory responses that results during host-pathogen interactions. We previously demonstrated detection of free lipid A from infected tissue; however detection of lipid A derived from intact (smooth) LPS from host-pathogen MSI studies, proved elusive.

View Article and Find Full Text PDF

While it is known that opioid receptors (ORs) are densely expressed in both the brain and periphery, it is widely accepted that hypoxic effects of opioids result solely from their direct action in the CNS. To examine the role of peripheral ORs in triggering brain hypoxia, we used oxygen sensors in freely moving rats to examine how naloxone-HCl and naloxone-methiodide, the latter which is commonly believed to be peripherally restricted, affect brain oxygen responses induced by intravenous heroin at low, human-relevant doses. Similar to naloxone-HCl, naloxone-methiodide at a relatively low dose (2 mg/kg) fully blocked heroin-induced decreases in brain oxygen levels.

View Article and Find Full Text PDF

Cocaine is an addictive drug that acts in brain reward areas. Recent evidence suggests that cocaine stimulates synthesis of the endocannabinoid 2-arachidonoylglycerol (2-AG) in midbrain, increasing dopamine neuron activity via disinhibition. Although a mechanism for cocaine-stimulated 2-AG synthesis is known, our understanding of 2-AG release is limited.

View Article and Find Full Text PDF

Docosahexaenoic acid (DHA) is an ω-3 dietary-derived polyunsaturated fatty acid of marine origin enriched in testes and necessary for normal fertility, yet the mechanisms regulating the enrichment of DHA in the testes remain unclear. Long-chain ACSL6 (acyl-CoA synthetase isoform 6) activates fatty acids for cellular anabolic and catabolic metabolism by ligating a CoA to a fatty acid, is highly expressed in testes, and has high preference for DHA. Here, we investigated the role of ACSL6 for DHA enrichment in the testes and its requirement for male fertility.

View Article and Find Full Text PDF

Electrostatic interactions are one of the main factors influencing biomolecular conformation. The formation of noncovalent complexes by electrostatic interactions is governed by certain amino acid residues and post-translational modifications. It has been demonstrated that adjacent arginine forms noncovalent complex with phosphate; however, histidine noncovalent complexes have rarely been investigated.

View Article and Find Full Text PDF

In this paper, drug-drug chemical interactions between two different aromatic compounds were studied by mass spectrometry. Specifically, we examined non-covalent complexes (NCX) between paclitaxel, a chemotherapeutic compound, and medications widely used in palliative care for depression, psychosis, and anxiety. It is unknown whether psychotropic medications directly interact with paclitaxel.

View Article and Find Full Text PDF

Long-chain PUFAs (LC-PUFAs; C20-C22; e.g., DHA and arachidonic acid) are highly enriched in vertebrate retina, where they are elongated to very-long-chain PUFAs (VLC-PUFAs; C 28) by the elongation of very-long-chain fatty acids-4 (ELOVL4) enzyme.

View Article and Find Full Text PDF

Schnyder corneal dystrophy (SCD) is a rare autosomal dominant disease in humans, characterized by abnormal deposition of cholesterol and phospholipids in cornea caused by mutations in the UbiA prenyltransferase domain containing 1 (UBIAD1) gene. In this study, we generated a mouse line carrying Ubiad1 N100S point mutation using the CRISPR/Cas9 technique to investigate the pathogenesis of SCD. In vivo confocal microscopy revealed hyper-reflective dot-like deposits in the anterior cornea in heterozygotes and homozygotes.

View Article and Find Full Text PDF

Objective: Cells use various mechanisms to maintain cellular cholesterol homeostasis including efflux of cholesterol from the cellular plasma membrane to cholesterol acceptors such as HDLs (high-density lipoproteins). Little is known about the transfer of cholesterol from cells into the extracellular matrix. Using a unique monoclonal antibody that detects ordered cholesterol arrays (ie, cholesterol micro[or nano]-domains), we previously identified that particles containing these cholesterol domains accumulate in the extracellular matrix during cholesterol enrichment of human monocyte-derived macrophages and are found in atherosclerotic lesions.

View Article and Find Full Text PDF

Matrix-assisted laser/desorption ionization (MALDI) mass spectrometry imaging (MSI) is widely used as a unique tool to record the distribution of a large range of biomolecules in tissues. 2,6-Dihydroxyacetophenone (DHA) matrix has been shown to provide efficient ionization of lipids, especially gangliosides. The major drawback for DHA as it applies to MS imaging is that it sublimes under vacuum (low pressure) at the extended time necessary to complete both high spatial and mass resolution MSI studies of whole organs.

View Article and Find Full Text PDF

Traumatic brain injury (TBI) is a serious public health problem and the leading cause of death in children and young adults. It also contributes to a substantial number of cases of permanent disability. As lipids make up over 50% of the brain mass and play a key role in both membrane structure and cell signaling, their profile is of particular interest.

View Article and Find Full Text PDF

Mass spectrometry imaging (MSI) of tissue implanted with silver nanoparticulate (AgNP) matrix generates reproducible imaging of lipids in rodent models of disease and injury. Gas-phase production and acceleration of size-selected 8 nm AgNP is followed by controlled ion beam rastering and soft landing implantation of 500 eV AgNP into tissue. Focused 337 nm laser desorption produces high quality images for most lipid classes in rat brain tissue (in positive mode: galactoceramides, diacylglycerols, ceramides, phosphatidylcholines, cholesteryl ester, and cholesterol, and in negative ion mode: phosphatidylethanolamides, sulfatides, phosphatidylinositol, and sphingomyelins).

View Article and Find Full Text PDF

Alcohol abuse is a chronic disease characterized by the consumption of alcohol at a level that interferes with physical and mental health and causes serious and persistent changes in the brain. Lipid metabolism is of particular interest due to its high concentration in the brain. Lipids are the main component of cell membranes, are involved in cell signaling, signal transduction, and energy storage.

View Article and Find Full Text PDF