Publications by authors named "Shelley Izquierdo"

Heavy chain-only antibodies have found many applications where conventional heavy-light heterodimeric antibodies are not favorable. Heavy chain-only antibodies with their single antigen-binding domain offer the advantage of a smaller size and higher stability relative to conventional antibodies, and thus, the potential for novel targeting modalities. Domain antibodies have commonly been sourced from camelids with humanization or transgenic rodents expressing heavy chains without light chains, but these host species are all mammalian, limiting their capacity to elicit robust immune responses to conserved mammalian targets.

View Article and Find Full Text PDF

H chain-only Igs are naturally produced in camelids and sharks. Because these Abs lack the L chain, the Ag-binding domain is half the size of a traditional Ab, allowing this type of Ig to bind to targets in novel ways. Consequently, the H chain-only single-domain Ab (sdAb) structure has the potential to increase the repertoire and functional range of an active humoral immune system.

View Article and Find Full Text PDF

Targeting the CD47-signal-regulatory protein α (SIRPα) pathway represents a novel therapeutic approach to enhance anti-cancer immunity by promoting both innate and adaptive immune responses. Unlike CD47, which is expressed ubiquitously, SIRPα expression is mainly restricted to myeloid cells and neurons. Therefore, compared to CD47-targeted therapies, targeting SIRPα may result in differential safety and efficacy profiles, potentially enabling lower effective doses and improved pharmacokinetics and pharmacodynamics.

View Article and Find Full Text PDF

Transgenic animal platforms for the discovery of human monoclonal antibodies have been developed in mice, rats, rabbits and cows. The immune response to human proteins is limited in these animals by their tolerance to mammalian-conserved epitopes. To expand the range of epitopes that are accessible, we have chosen an animal host that is less phylogenetically related to humans.

View Article and Find Full Text PDF

Raising functional antibodies against G protein-coupled receptors (GPCRs) is challenging due to their low density expression, instability in the absence of the cell membrane's lipid bilayer and frequently short extracellular domains that can serve as antigens. In addition, a particular therapeutic concept may require an antibody to not just bind the receptor, but also act as a functional receptor agonist or antagonist. Antagonizing the glucose-dependent insulinotropic polypeptide (GIP) receptor may open up new therapeutic modalities in the treatment of diabetes and obesity.

View Article and Find Full Text PDF

Since the discovery of antibody-producing B cells in chickens six decades ago, chickens have been a model for B-cell development in gut-associated lymphoid tissue species. Here we describe targeting of the immunoglobulin light chain locus by homologous recombination in chicken primordial germ cells (PGCs) and generation of VJCL knockout chickens. In contrast to immunoglobulin heavy chain knockout chickens, which completely lack mature B cells, homozygous light chain knockout (IgL(-/-) ) chickens have a small population of B lineage cells that develop in the bursa and migrate to the periphery.

View Article and Find Full Text PDF

The CRISPR/Cas9 system has been applied in a large number of animal and plant species for genome editing. In chickens, CRISPR has been used to knockout genes in somatic tissues, but no CRISPR-mediated germline modification has yet been reported. Here we use CRISPR to target the chicken immunoglobulin heavy chain locus in primordial germ cells (PGCs) to produce transgenic progeny.

View Article and Find Full Text PDF

Cre recombinase has been extensively used for genome engineering in transgenic mice yet its use in other species has been more limited. Here we describe the generation of transgenic chickens expressing Cre recombinase. Green fluorescent protein (GFP)-positive chicken primordial germ cells were stably transfected with β-actin-Cre-recombinase using phiC31 integrase and transgenic chickens were generated.

View Article and Find Full Text PDF

The ability of monoclonal antibodies (mAbs) to target specific antigens with high precision has led to an increasing demand to generate them for therapeutic use in many disease areas. Historically, the discovery of therapeutic mAbs has relied upon the immunization of mammals and various in vitro display technologies. While the routine immunization of rodents yields clones that are stable in serum and have been selected against vast arrays of endogenous, non-target self-antigens, it is often difficult to obtain species cross-reactive mAbs owing to the generally high sequence similarity shared across human antigens and their mammalian orthologs.

View Article and Find Full Text PDF

Gene targeting by homologous recombination or by sequence-specific nucleases allows the precise modification of genomes and genes to elucidate their functions. Although gene targeting has been used extensively to modify the genomes of mammals, fish, and amphibians, a targeting technology has not been available for the avian genome. Many of the principles of humoral immunity were discovered in chickens, yet the lack of gene targeting technologies in birds has limited biomedical research using this species.

View Article and Find Full Text PDF

Transgenic chickens expressing human sequence antibodies would be a powerful tool to access human targets and epitopes that have been intractable in mammalian hosts because of tolerance to conserved proteins. To foster the development of the chicken platform, it is beneficial to validate transgene constructs using a rapid, cell culture-based method prior to generating fully transgenic birds. We describe a method for the expression of human immunoglobulin variable regions in the chicken DT40 B cell line and the further diversification of these genes by gene conversion.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionn57f8j6pgcv0jdtg7dr495ihjtog56j8): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once