Mononuclear phagocyte (MP, macrophages and microglia) dysfunction plays a significant role in the pathogenesis of HIV-1-associated dementia (HAD) through the production and release of soluble neurotoxic factors including glutamate. Glutamate production is greatly increased following HIV-1 infection of cultured MP, a process dependent upon the glutamate-generating enzyme glutaminase. Glutaminase inhibition was previously found to significantly decrease macrophage-mediated neurotoxicity.
View Article and Find Full Text PDFMononuclear phagocyte (macrophages and microglia) dysfunction plays a significant role in the pathogenesis of human immunodeficiency virus (HIV) associated dementia (HAD) through the production and release of soluble neurotoxic factors including glutamate. The mechanism of glutamate regulation by HIV-1 infection remains unclear. In this report, we investigated whether the enzyme glutaminase is responsible for glutamate generation by HIV-1 infected monocyte-derived macrophages.
View Article and Find Full Text PDFHIV-1 uses mononuclear phagocytes (monocytes, tissue macrophages, and dendritic cells) as a vehicle for its own dissemination and as a reservoir for continuous viral replication. The mechanism by which the host immune system clears HIV-1-infected macrophages is not understood. TRAIL may play a role in this process.
View Article and Find Full Text PDFNeural stem/progenitor cells (NPCs) are present in the developing and adult central nervous system. NPC apoptosis is an important aspect of normal brain development. We show that tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) receptor 2 is highly expressed on human NPCs derived from fetal cortex, yet TRAIL induces only minimal levels of apoptosis in NPCs.
View Article and Find Full Text PDFThe ability to identify neuronal damage in the dendritic arbor during HIV-1-associated dementia (HAD) is crucial for designing specific therapies for the treatment of HAD. To study this process, we utilized a computer-based image analysis method to quantitatively assess HIV-1 viral protein gp120 and glutamate-mediated individual neuronal damage in cultured cortical neurons. Changes in the number of neurites, arbors, branch nodes, cell body area, and average arbor lengths were determined and a database was formed (http://dm.
View Article and Find Full Text PDFStromal cell-derived factor 1 (SDF-1) and the chemokine receptor CXCR4 are highly expressed in the nervous system. Knockout studies have suggested that both SDF-1 and CXCR4 play essential roles in cerebellar, hippocampal, and neocortical neural cell migration during embryogenesis. To extend these observations, CXCR4 signaling events in rat and human neural progenitor cells (NPCs) were examined.
View Article and Find Full Text PDFDysfunction in mononuclear phagocyte (MP, macrophages and microglia) immunity is thought to play a significant role in the pathogenesis of HIV-1 associated dementia (HAD). In particular, elevated extracellular concentrations of the excitatory neurotransmitter glutamate, produced by MP as a consequence of viral infection and immune activation, can induce neuronal injury. To determine the mechanism by which MP-mediated neuronal injury occurs, the concentration and rates of production of extracellular glutamate were measured in human monocyte-derived macrophage (MDM) supernatants by reverse phase high-performance liquid chromatography (RP-HPLC).
View Article and Find Full Text PDF