Publications by authors named "Shelley F Newman"

Previous studies indicated increased levels of protein oxidation in brain from subjects with Alzheimer's disease (AD), raising the question of whether oxidative damage is a late effect of neurodegeneration or precedes and contributes to the pathogenesis of AD. Hence, in the present study we used a parallel proteomic approach to identify oxidatively modified proteins in inferior parietal lobule (IPL) from subjects with mild cognitive impairment (MCI) and early stage-AD (EAD). By comparing to age-matched controls, we reasoned that such analysis could help in understanding potential mechanisms involved in upstream processes in AD pathogenesis.

View Article and Find Full Text PDF

Protein carbonyls are an index of protein oxidation which, in turn, reflects the interplay of oxidative stress and degradation of oxidatively modified proteins. Protein carbonyls are increased in brain proteins in aging and age-related neurodegenerative disorders, including Alzheimer's disease. In this chapter, we outline methods to detect protein carbonyls following two dimensional-based separation of brain proteins.

View Article and Find Full Text PDF

Oxidative stress has been implicated to play a crucial role in the pathogenesis of a number of diseases, including neurodegenerative disorders, cancer, and ischemia, just to name a few. Alzheimer disease (AD) is an age-related neurodegenerative disorder that is recognized as the most common form of dementia. AD is histopathologically characterized by the presence of extracellular amyloid plaques, intracellular neurofibrillary tangles, the presence of oligomers of amyloid beta-peptide (Abeta), and synapse loss.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a neurodegenerative disorder characterized by neurofibrillary tangles, senile plaques, and loss of synapses. Many studies support the notion that oxidative stress plays an important role in AD pathogenesis. Previous studies from our laboratory employed redox proteomics to identify oxidatively modified proteins in the AD inferior parietal lobule (IPL) and hippocampus.

View Article and Find Full Text PDF

Proteolytic processing and phosphorylation of amyloid precursor protein (APP), and hyperphosphorylation of tau protein, have been shown to be increased in Alzheimer's disease (AD) brains, leading to increased production of beta-amyloid (Abeta) peptides and neurofibrillary tangles, respectively. These observations suggest that phosphorylation events are critical to the understanding of the pathogenesis and treatment of this devastating disease. Pin-1, one of the peptidyl-prolyl isomerases (PPIase), catalyzes the isomerization of the peptide bond between pSer/Thr-Pro in proteins, thereby regulating their biological functions which include protein assembly, folding, intracellular transport, intracellular signaling, transcription, cell cycle progression and apoptosis.

View Article and Find Full Text PDF

Oxidative stress has been implicated in the pathophysiology of a number of diseases, including neurodegenerative disorders such as Alzheimer's disease (AD), a neurodegenerative disorder associated with cognitive decline and enhanced oxidative stress. Amyloid-beta peptide(1-42) (Abeta(1-42)), one of the main component of senile plaques, can induce in vitro and in vivo oxidative damage to neuronal cells through its ability to produce free radicals. The aim of this study was to investigate the protective effect of the xanthate D609 on Abeta(1-42)-induced protein oxidation by using a redox proteomics approach.

View Article and Find Full Text PDF