Publications by authors named "Shelley Coldiron"

The demand for high-throughput analytical tools to support drug discovery applications has led to the development of multiplexed capillary electrophoresis and multichannel microfluidic devices to characterize libraries of compounds and alleviate backlogs in the discovery process. The capability to analyze multiple samples in parallel, and the diverse separation conditions that are permissible, facilitates rapid turnaround times. Examples of high-throughput applications of multiplexed electrophoresis in drug discovery include: physicochemical profiling, enzyme analysis, chiral separations and protein/metabolite analysis.

View Article and Find Full Text PDF

To fully realize the potential of combinatorial synthesis and high-throughput screening for increasing the efficiency of the drug discovery and development process, issues related to compound purity must be addressed. Impurities, often present after synthesis, can lead to ambiguous screening results and inhibit the development of quality structure-activity relationships. The demand for high-throughput analytical characterization of combinatorial libraries has prompted the development of more rapid methods to keep pace with compound production.

View Article and Find Full Text PDF

Combinatorial processes have been widely applied to many disciplines in chemistry and biology. The vast numbers of unique entities generated by combinatorial synthesis have led to the development of high-throughput methods for characterizing samples, to avoid bottlenecks created by the application of conventional, serial-based analytical techniques. In recent years, high-throughput and novel methods utilizing mass spectrometry, multiplexed capillary electrophoresis, various forms of optical detection, and even sound waves have been investigated for a variety of applications.

View Article and Find Full Text PDF