Publications by authors named "Shelley Bloom"

The benzimidazole opioids (substituted nitazenes) are highly potent opiod receptor (MOR) agonists with heroin- or fentanyl-like effects. These compounds have caused hospitalizations and fatal overdoses. We characterized the in vitro pharmacology and structure-activity relationships of 19 nitazenes with substitutions at three positions of the benzimidazole core.

View Article and Find Full Text PDF

We have previously identified 5-chloro-2-methyl-2-(3-(4-(pyridin-2-yl)piperazin-1-yl)propyl)-2,3-dihydro-1-inden-1-one (SYA0340) as a dual 5-HT and 5-HT receptor ligand, and we posited such ligands might find utility in the treatment of various CNS related illnesses including cognitive and anxiolytic impairments. However, SYA0340 has a chiral center and its enantiomers may confound the readouts for their functional characteristics. Thus, in this study, we resynthesized SYA0340, separated the enantiomers, identified the absolute configurations, and evaluated their binding affinities and functional characteristics at both the 5-HT and 5-HT receptors.

View Article and Find Full Text PDF

Novel psychoactive substances, including synthetic substituted tryptamines, represent a potential public health threat. Additionally, some substituted tryptamines are being studied under medical guidance as potential treatments of psychiatric disorders. Characterizing the basic pharmacology of substituted tryptamines will aid in understanding differences in potential for harm or therapeutic use.

View Article and Find Full Text PDF

The non-medical use of opioids has become a national crisis in the USA. Developing non-opioid pharmacotherapies for controlling this opioid epidemic is urgent. Dopamine D receptor (DR) antagonists and low efficacy partial agonists have shown promising profiles in animal models of opioid use disorders (OUD).

View Article and Find Full Text PDF

In response to a surge of deaths from synthetic opioid overdoses, there have been increased efforts to distribute naloxone products in community settings. Prior research has assessed the effectiveness of naloxone in the hospital setting; however, it is challenging to assess naloxone dosing regimens in the community/first-responder setting, including reversal of respiratory depression effects of fentanyl and its derivatives (fentanyls). Here, we describe the development and validation of a mechanistic model that combines opioid mu receptor binding kinetics, opioid agonist and antagonist pharmacokinetics, and human respiratory and circulatory physiology, to evaluate naloxone dosing to reverse respiratory depression.

View Article and Find Full Text PDF

We have previously reported that dual 5-HT and 5-HT receptor ligands might find utility as treatment options for various CNS related conditions including cognitive and anxiolytic impairments. We have also more recently reported that SYA16263 has antipsychotic-like properties with an absence of catalepsy in animal models ascribed to its ability to recruit β-arrestin to the D receptor. However, SYA16263 also binds with very high affinity to 5-HTR (Ki = 1.

View Article and Find Full Text PDF

Synthetic opioids, including fentanyl and its analogs, have therapeutic efficacy in analgesia and anesthesia. However, their illicit use in the United States has increased and contributed to the number one cause of death for adults 18-50 years old. Fentanyl and the heroin metabolite morphine induce respiratory depression that can be treated with the opioid receptor (MOR) antagonist naloxone.

View Article and Find Full Text PDF

In utero alcohol exposure can cause fetal alcohol spectrum disorders (FASD), characterized by structural brain abnormalities and long-lasting behavioral and cognitive dysfunction. Neuronal plasticity is affected by in utero alcohol exposure and can be modulated by extracellular proteolysis. Plasmin is a major extracellular serine-protease whose activation is tightly regulated by the plasminogen activator (PA) system.

View Article and Find Full Text PDF

Chronic alcohol abuse is associated with brain damage in a sex-specific fashion, but the mechanisms involved are poorly described and remain controversial. Previous results have suggested that astrocyte gene expression is influenced by ethanol intoxication and during abstinence in vivo. Here, bioinformatic analysis of astrocyte-enriched ethanol-regulated genes in vivo revealed ubiquitin pathways as an ethanol target, but with sexually dimorphic cytokine signaling and changes associated with brain aging in females and not males.

View Article and Find Full Text PDF

Women are more sensitive to the harmful effects of alcohol (EtOH) abuse than men, yet the underlying mechanisms remain poorly understood. Previous gene expression analysis of the medial prefrontal cortex (mPFC) following a chronic intoxication paradigm using continuous 72 h vapor inhalation found that females, but not males, exhibit an inflammatory response at peak withdrawal that is associated with cell damage. Given that glucocorticoids can function as anti-inflammatories, are known to increase with EtOH exposure, and influence neurotoxicity, we hypothesized that males and females may exhibit an altered corticosterone (CORT) response following chronic intoxication.

View Article and Find Full Text PDF